[スポンサーリンク]

一般的な話題

ワンチップ顕微鏡AminoMEを買ってみました

[スポンサーリンク]

2014年、ノーベル化学賞が超解像度顕微鏡で授与されたためイメージング技術に注目が集まりました。その後もさまざまな顕微鏡が開発され、進歩し続けています。
昨年、ベンチャー企業のIDDKがクラウドファンディングでワンチップ顕微鏡AminoMEの出資を募っていたため、(私物として)買ってみました。ちょっと使ったまましばらく放置していましたが、せっかくお金を出したのでここでレビューを書いてみたいと思います。

ワンチップ顕微鏡とは?その仕組みと従来光学顕微鏡との違い

IDDKのホームページによると、ワンチップ顕微鏡は光学センサー上に観察対象をのせて直接画像として読み取る技術のようです。通常の顕微鏡ではサンプルをレンズ越しに読み取るのに対し、AminoMEでは4.7 mm×3.2 mmのセンサーを用いて分解能1.2 μmで読み込むことができます。公式ソフトで保存できる画像が最大4208×3120 pxなので、スペック的にオンセミ AR1335か似たようなエリアイメージセンサーを使っているものと思われます。
この方式のメリットとしては光学系が単純なためシンプルで小さな構成にできることやピント合わせが不要なことです。実際、AminoMEはUSBメモリーよりちょっと大きいサイズの装置です。デメリットとしては可視光波長による理論限界により画素ピッチを0.7 μmより小さくできないことでしょう。実際、現行スマホ用カメラセンサーも最小そのぐらいまでのようです。このスペックは光学顕微鏡の分解能よりわずかに悪いとはいえ、実用上ではだいたい似たようなものだと思われます。

実際に使ってみました

AminoMEを実際に使ってみました。観察対象は理科の実験授業などでもおなじみの口腔上皮細胞です。綿棒で頬の裏側をこすり、センサー上に載せて観察してみました。照明はiPhoneのライトを上からあてるだけです。

専用ソフトGUAISで観察中のスクリーンショット

AminoMEを使った観察にはWindows版のみの専用ソフトが必要で、他のOSでは動きません。Windows上ではUSBカメラとして認識されるようですが、OS標準のカメラアプリやOpenCVで動かすことはできませんでした。画像保存形式はRAWのみのため、ImageJIrfanViewなどの対応ソフトでTIFFやJPEGなど汎用形式に変換する必要があります。あんまり使い勝手いいとは言えません。

等倍表示

観察中は左下に範囲が表示され、等倍、1/2倍など画素に応じた倍率を設定できます。家で撮影したため染色は行なっていませんが、等倍表示では核まできちんと確認できました。かなり鮮明です。普通の明視野光学顕微鏡でこの手の非染色サンプルのピント合わせは難しいイメージがあるので、一発で観察できるのはけっこうなメリットだと思われます。

ラズパイカメラで同じようなことはできないか?

約10年前、ニコンからD600というカメラが発売されました。シャッターを切れば切るほどセンサー上についたゴミが写ることで有名になったものの、なぜかリコールされずに個別交換対応となった曰くつき製品です。私も買ってしまったため、せっかく撮った旅行先風景写真の青空が、特にレンズを絞った際にはゴミだらけになっていた思い出があります。エリアセンサー上に観察物を直接のせるAminoMEは、似たような基本原理で透過像を得ているのだと思われます。むき出しのエリアイメージセンサーさえあれば同様の観察ができると思い、実際にやってみました。

Pi Camera V2 + カバーガラス

Raspberry Pi Camera V2Raspberry Pi(ラズパイ)専用のカメラで、使われているソニーセンサーIMX219はAminoMEの公称スペックによく似ています。Pi Cameraはラズパイ上でプログラム撮影するのに便利で、AminoME同様の目的で使えるならば自由度が増すことが予想されます。このモジュールは3500円程度なので研究費で気軽に買えるお値段です(記事のものは私物ですが)。Pi Cameraにはもともと簡易なレンズが接着されていますが、爪を入れて剥がすとセンサーをむき出しにできます。センサーにAmazonでも手に入るカバーガラスをのせたあと、その上に綿棒をすりつけて観察してみました。(センサーとカバーガラスの間にはギャップができたため、イメージセンサーにも使えるカメラレンズクリーナー液を間に垂らしました。)

Pi Cameraで取得した画像(全画素)

撮影した画像がこちら。照明条件は同じくiPhoneのライトです。レンズを剥離する際にIRカットフィルタも外されるため、カラー画像では余計な赤外光を拾って赤みがかります。拡大しない限り細胞の形はそれっぽく見えています。

モノクロ等倍

しかし等倍表示したところ像がボケていました。これは前述のようにセンサー・観察対象間の距離があるからだと思われます。ここまできたらとカバーガラスを取り去り綿棒に水を含ませてセンサー上に直接落として観察したところ、かなり鮮明に細胞を見ることができました。しかしセンサー周辺部へと徐々に水滴が広がってワイヤー配線に触れたせいで、ショートが起こりカメラモジュールが壊れたために画像未取得のまま打ち切りました。

感覚的に、Pi Cameraのセンサー周辺のワイヤーをエポキシ樹脂(接着材)などで固めて絶縁をきちんとすればAminoME同等のものを安くDIYできる気がしますが、カメラモジュールを買い直してまで家でやるのは面倒なのでやめました。仕事の実験環境では細胞をまったく扱わないのですが、例えばマイクロ流体デバイスなど研究する機会があれば再度挑戦するかもしれません。

ところでラズパイ+Pi Cameraはプログラムを書き込んだmicroSDを挿すだけで簡易USBカメラとして用いることができます。こちらはWindowsでもMacでもLinuxでも動きます。

現状のプログラムでは全画素の表示に対応しておらずHDなどに縮小されてしまいますが、数μm程度の解像度でよければAminoMEより使いやすいUSBデバイスを自作できるかもしれません。半導体不足の影響で在庫切れが続いているものの、ラズパイUSBカメラは全部で5千円程度から組めます。特別なプログラミング知識はまったく必要としないので興味をもったら試してみてください。

今後のAminoMEに期待すること

AminoMEは現在55,000円で公式販売されているようです。センサー部分に対しどの程度の独自カスタマイズが加えられているのかわかりませんが、個人的にはハードウェアをアップデートしていくよりも先にソフトウェアの使い勝手をよくするか、API公開でプログラムに組み込みやすくして欲しいと感じました。画像処理でさまざまなデータが簡単に得られるようになってきている現在、自由にプログラム制御できる装置は重要です。私は仕事ではサブμm以下を観察することがほとんどのためAminoMEは趣味?でしか使えません。だからこそいろいろ遊びやすくなることを期待しています。

[amazonjs asin=”B000GY8YVW” locale=”JP” title=”Nikon ネイチャースコープ ファーブルミニ”] [amazonjs asin=”B018LCH312″ locale=”JP” title=”松浪硝子工業 角カバーグラス 18×18 トロフィー 100枚入 CT18189″]

 

Avatar photo

GEN

投稿者の記事一覧

大学JK->国研研究者。材料作ったり卓上CNCミリングマシンで器具作ったり装置カスタマイズしたり共働ロボットで遊んだりしています。ピース写真付インタビューが化学の高校教科書に掲載されました。

関連記事

  1. アンモニアを窒素へ変換する触媒
  2. 【詳説】2013年イグノーベル化学賞!「涙のでないタマネギ開発」…
  3. 糖鎖を化学的に挿入して糖タンパク質を自在に精密合成
  4. アメリカ化学留学 ”実践編 ー英会話の勉強ーR…
  5. 市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナ…
  6. 複数のねじれを持つ芳香族ベルトの不斉合成と構造解析に成功
  7. 水素ガス/酸素ガスで光特性を繰り返し変化させる分子
  8. 初めてTOEICを受験してみた~学部生の挑戦記録~

注目情報

ピックアップ記事

  1. NHC銅錯体の塩基を使わない直接的合成
  2. 二次元物質の科学 :グラフェンなどの分子シートが生み出す新世界
  3. 有機合成化学協会誌2023年2月号:セレノリン酸誘導体・糖鎖高次機能・刺激応答型発光性液体材料・生物活性含酸素環式天然物・第9族金属触媒
  4. グライコシンターゼ (Endo-M-N175Q) : Glycosynthase (Endo-M-N175Q)
  5. アントニオ・M・エチャヴァレン Antonio M. Echavarren
  6. 次世代医薬とバイオ医療
  7. 統合失調症治療の新しいターゲット分子候補−HDAC2
  8. 日本化学会と対談してきました
  9. ジョージ・オラー George Andrew Olah
  10. 複雑天然物Communesinの新規類縁体、遺伝子破壊実験により明らかに!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP