[スポンサーリンク]

chemglossary

酵素触媒反応の生成速度を考える―ミカエリス・メンテン機構―

[スポンサーリンク]

hodaです。酵素はすごい触媒だなあと思っています。
今回は学部の物理化学等で学ぶ、酵素触媒反応における生成物の生成速度を求めるミカエリス・メンテン機構の話です。

ミカエリス·メンテン機構とは

ミカエリス・メンテン機構(速度論)は1913年にドイツの生化学者Leonor Michaelisとカナダの生化学者Maud L. Mentenによって提案された1,2、酵素触媒反応の生成物の生成速度に関する速度論です。
酵素触媒反応の特徴としては、基質濃度に対して酵素の濃度が3桁以上小さい場合にも顕著な触媒能を示すこと3や、10-8Mという小さい濃度であっても生体反応に影響を与えることが挙げられます4。よって、酵素は非常に効率的な触媒であり、生命維持に欠かせない生体分子と言えるでしょう。

モデル

多くの触媒反応の反応速度は次のように振る舞うことが知られていました3,4

①基質濃度が小さいときは基質濃度に比例  v0 = k[S]

②基質濃度が大きいときは基質濃度に依存せず、一定の値に近づく v0 = v max

 

ミカエリス・メンテン機構では、上の酵素反応速度の振る舞いを説明するために下記のようなモデルを考えます。
登場人物
E…酵素 (enzyme の頭文字の E)
S…基質 (substrate の頭文字の S)
ES…酵素―基質複合体
P…生成物 (product の頭文字の P)
すなわち、酵素 (E) と基質 (S) が出会うと、まず複合体 (ES) を形成します。その複合体は、酵素と元の基質に分かれて逆戻りすることもありますが、生成物 P を与えることもできます。ただし生成物を与える場合も、酵素は酵素のままです。つまり酵素自身は反応の前後で変化しないので、触媒として働いているわけです。

ミカエリス・メンテンの式の導出(定常状態近似を用いる方法)

これから生成物の生成速度を求めます。上のモデルでは生成物P は酵素-基質複合体から生成します。したがって、生成物P の生成初期速度v0 は、酵素-基質複合体の濃度に比例するはずです。

したがって、酵素-基質複合体の濃度の濃度 [ES] さえわかれば、生成物P の生成初期速度v0が求まります。

ミカエリス·メンテンの式は大まかに次の手順で導かれます。
(1) 定常状態近似を利用して酵素-基質複合体の濃度を求める
(2) 酵素-基質複合体の濃度を一次の速度式を代入する

(1) 定常状態近似を利用して酵素-基質複合体の濃度を求める
まず[ES]を求めにいきます。これには、定常状態近似という近似を用います。
[ES]について

によりESが消費されても

の右に進む反応により ES が新たに生成するので、[ES]は一定に保たれると考えられます。このように多段階反応において、中間体の濃度が一定であるとみなす近似を定常状態近似といいます。自分のノートにはd[ES]/dt = 0の意味を書き忘れて訳分からなくなっていました。濃度一定ということは、濃度の時間微分がゼロであることを意味するので、数式で表すと次のようになります。

酵素Eは存在している形が異なるだけなので、酵素 E と酵素—基質複合体 ES の濃度の和は一定で、Eの初期濃度に等しいはずです。Eの初期濃度を[E]0とすると、次のように式に表せます。

[E] + [ES] = [E]0

 [E]0 は既知の数字なので、上の式を式変形すれば、式の未知数の数を一つ減らすことができます。上の式を [E] についてとくと次の式が得られます。

[E] = [E]0 – [ES]

丁寧に式を変形して、[ES] について解きます。

目的であった、酵素基質複合体の濃度 [ES] を求めることができました。しかし、もう少し式を整理したいので、

とおいてみます。KMはミカエリス定数と呼ばれます。KM がどういう値であるかは、あとで詳しく調べるとして、とりあえず KM を用いて[ES]の式をさらに整理していきます。
オレンジで囲われた式の形式も、緑で囲われた式の形式も同じことを表していますが、どちらの形式も後で使います。

(2) 酵素-基質複合体の濃度を一次の速度式を代入する

v0を導出することができました。v0はオレンジで囲った形でも緑で囲った形でも表せるように、いくつかの形式で表すことができるので、その後の式展開で便利な方を使いましょう。

次にv0の式を用いて①基質濃度が小さいとき②基質濃度が大きいときの特徴を調べます。
①基質濃度が小さいとき [S] << KMより

k3、[E]、KMは一定なので、反応物の生成速度は基質濃度[S]に比例します。

②基質濃度が大きいとき [S] >> KMより

右辺に[S]がない、つまり反応物の生成速度は基質濃度[S]に依存しません。これは酵素に対して基質の量が非常に多いと、ほとんどすべての酵素が複合体を形成するからです。このとき、もし全ての酵素が複合体を形成しているなら、このときの酵素反応の速度は最大速度 vmax であるはずです。したがって基質濃度が非常に高いときは、酵素反応は最大速度を示し、その値は vmax = k3[ES] といえます。vmax を利用すれば、ミカエリス・メンテンの式を表し直すこともできます。

以上より、ここで導出した式は、記事の冒頭で紹介した実験事実を説明できていることがわかります。

ミカエリス定数KMの意味

さきほど、KM という定数を導入しましたが、この定数がどういう意味を持つのか考えてみましょう。やや唐突ですが、[S] = KM とおきます。そうすると、v0 の式の分母が整理され、v0 = vmax/2となります。

つまり、 酵素反応の初速度が最大速度の半分になるような基質濃度[S]が KM に対応していたわけです。

基質濃度と生成速度の関係は図1のようなります。

図1 基質濃度と生成速度の関係

一次直線のプロット作る

vmaxKM を実験的に求めるにはどうればよいでしょうか。ミカエリス・メンテンの式を変形して、それらの値を傾きに含むような一次直線のプロットを作るのが常套手段です。ミカエリス・メンテンの式の逆数をとって、式変形していきます。

次に1/v0と1/[S]を軸としたグラフを描いてみます。

図2 生成速度と基質濃度の逆数をとったグラフ

この生成速度と基質濃度の逆数をとったグラフをラインウィーバー-パークプロットといいます。このプロットの切片から 1/vmax が得られ、傾きと切片から KM を求めることができます。

終わりに

近似は今回紹介した定常状態近似だけでなくて、前駆平衡を使っているものもありました。ここでは競合阻害などは考えていないですが、阻害剤などを足してより複雑なモデルも構築できます6
今回はここまで。

阻害剤を入れた場合については次の記事をご覧ください(酵素触媒反応の生成速度を考えるー阻害剤入りー

参考文献

  1. 岩澤康裕、北川禎三、濱口宏夫、化学・生命科学系のための物理化学、東京化学同人、2003
  2. 功刀滋、内藤晶、生命科学にための物理化学15講、講談社、2018
  3. 中野元裕ほか、アトキンス物理化学(下)第10版、東京化学同人、2017
  4. 寺嶋正秀、馬場正昭、松本吉泰、現代物理化学、化学同人、2015
  5. 田中一義、ボール物理化学(下)、化学同人、2005
  6. 多比良和誠、二村泰弘、加藤 卓、反応スキームを眺めて簡単に解ける酵素反応速度論、https://gair.media.gunma-u.ac.jp/dspace/bitstream/10087/10735/1/Vol7-1_%EF%BD%9047-56Taira.pdf , 2016

全体の参考も同上

関連書籍

化学・生命科学系のための物理化学

化学・生命科学系のための物理化学

Raymond Chang
¥6,490(as of 04/13 19:01)
Amazon product information
生命科学のための物理化学15講 (KS生命科学専門書)

生命科学のための物理化学15講 (KS生命科学専門書)

功刀滋, 内藤晶
¥3,080(as of 04/13 19:01)
Release date: 2018/01/27
Amazon product information
アトキンス物理化学 下

アトキンス物理化学 下

¥6,380(as of 04/13 19:01)
Amazon product information
現代物理化学

現代物理化学

寺嶋 正秀, 馬場 正昭, 松本 吉泰
¥6,050(as of 04/13 19:01)
Amazon product information
ボール物理化学 下

ボール物理化学 下

D.W. ボール
Amazon product information

関連リンク

酵素関連
多才な補酵素 : PLP
酵素触媒によるアルケンのアンチマルコフニコフ酸化

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. グリーンケミストリー Green Chemistry
  2. 光線力学療法 Photo Dynamic Therapy (PD…
  3. スナップタグ SNAP-tag
  4. 振動円二色性スペクトル Vibrational Circular…
  5. 【金はなぜ金色なの?】 相対論効果 Relativistic E…
  6. 分取薄層クロマトグラフィー PTLC (Preparative …
  7. 有機EL organic electroluminescence…
  8. 不斉触媒 Asymmetric Catalysis

注目情報

ピックアップ記事

  1. シャンカー・バラスブラマニアン Shankar Balasubramanian
  2. シリンドロシクロファン生合成経路の解明
  3. 2007年ノーベル化学賞『固体表面上の化学反応の研究』
  4. 原子力機構大洗研 150時間連続で水素製造 高温ガス炉 実用化へ大きく前進
  5. カルバメート系保護基 Carbamate Protection
  6. アセトアミノフェン Acetaminophen
  7. 第八回 ユニークな触媒で鏡像体をつくり分けるー林民生教授
  8. 祝5周年!-Nature Chemistryの5年間-
  9. 【技術者・事業担当者向け】 マイクロ波がもたらすプロセス効率化と脱炭素化 〜ケミカルリサイクル、焼成、乾燥、金属製錬など〜
  10. 海外留学ってどうなんだろう? ~きっかけ編~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年3月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー