[スポンサーリンク]

chemglossary

ラマン分光の基礎知識

[スポンサーリンク]

[latexpage]

物質に光を当てると光は散乱されるが、散乱光には入射光と異なるエネルギーの成分が存在する。この現象はラマン散乱と呼ばれている。入射光と散乱光のエネルギー差から分子振動の振動数を調べることができるため、分光学的分析手法としてラマン散乱は利用されている。

 

ラマン散乱とは

そもそも散乱とは、物質の光を当てたときにその進行方向が変化する現象のことを示す用語である。表面が粗い紙にレーザー光のような高強度の光を照射したことがあるだろうか。このとき、照射された付近からの散乱光を観測することで、私たちは「紙に光が当たった」ことを知覚する。
散乱光はその大部分が入射光と同じ波長の光である(弾性散乱、より厳密にはレイリー散乱)が、それと比べて少ない割合で入射光と微量にエネルギーが異なる散乱光も含まれている。この現象はC. V. RamanとK. S. Krishnanによって発見されたためラマン散乱と呼ばれている。ラマン散乱におけるエネルギー変化は分子振動に起因する。分子の振動にも準位が存在し、振動の量子数が変化すると分子のエネルギーも変化する。エネルギーダイヤグラムで説明すると(下図)、ある振動の量子数nから中間の状態を経由して同じ振動の量子数に戻ってくる散乱が弾性散乱であるのに対し、最終的に出発点と異なる振動準位に戻るのがラマン散乱である。ラマン散乱のうち、出発点より高い振動準位に戻る場合をストークスラマン散乱、より低い振動準位に戻る場合を反ストークス(アンチストークス)ラマン散乱と呼ぶ。

 

ラマン散乱スペクトルの概要

分子に強い光を当て、散乱される成分のうち入射光と異なる波長を検出すれば、そこから振動のエネルギーを計算することができる。具体的には、入射光の角振動数を$\nu_{\rm{in}}$、ラマン散乱光の角振動数$\nu_{\rm{out}}$をとすれば、
\begin{equation}
\Delta{E} = h(\nu_{\rm{out}} – \nu_{\rm{in}})
\end{equation}
と表現できる。散乱光のうちの大部分が弾性散乱による入射光と同じ波長の光であり、その場合は$\Delta{E} = 0$となるため解析の妨げにはならない。ゼロ点振動(n=0)とその1つ上の振動(n=1)にフォーカスするとすれば、理論上そのエネルギー差より大きいエネルギーの電磁波を使用すれば良いことになる。ラマン散乱スペクトルでは、中心に入射光成分(弾性散乱)の強いピークが現れ、その両側にラマン散乱のピークが現れる。平衡状態ではよりエネルギー準位の低い分子の占有数の方が多いため、一般に同じ振動を示すピークでは反ストークスラマン散乱よりもストークスラマン散乱の方が高強度になる。
下図はラマン散乱スペクトルの例(硫黄)である。(1)式において$\nu_{\rm{out}} – \nu_{\rm{in}} \le 0$ならばストークスラマン散乱であり、$\nu_{\rm{out}} – \nu_{\rm{in}} \ge 0$ならば反ストークスラマン散乱である。

[1]より

最も古典的な非共鳴ラマン分光では、中間状態がエネルギー的に低すぎず、かつ電子励起状態以下のエネルギーになるように可視領域の光が使われることが多い。

 

ラマン振動スペクトルの例

[2]より

ラマン散乱スペクトル上のラマンシフト(入射光からのエネルギー変化の程度)から振動のスペクトルが得られる。実際にラマン分光の測定をするときは振動のスペクトルのみが得られる場合が多い。下図はベンゼンのラマン振動スペクトルである。

 

ラマン散乱の選択律の概要

振動準位を測定する分光法は大きく2種類に分けられる。1つは赤外分光法(infrared: IR)でもう1つがラマン分光法である。赤外分光では1つの光子が1分子の振動状態を直接励起させるため、ある振動モードが赤外活性であるためには、その振動モードが平衡核座標(すなわち振動する分子の核座標の時間平均、私たちが紙に構造式を描くときの核座標)において双極子モーメントを変化させなければならない。一方、ある振動モードがラマン活性となるのは、その振動モードが平衡核座標において分極率を変化させる場合である。分極率とは分極のしやすさで電子密度と関係がある。一般に電子密度が高い状態では分極しにくいが、電子密度が低い状態では分極しやすい。単純な分子の場合だと、分子がその形を保ったまま拡大·縮小する振動では、電子密度が変化するため分極率が変化する振動と見なされる。つまり、おおざっぱにいうと対称性の高い分子の対称伸縮振動はラマン活性であると考えて良い。例えば、ベンゼンの環呼吸振動では、核の運動が静止するタイミングで電子密度が最大または最小になるので、ラマン活性であると帰属することができる。

 

ラマン散乱の選択律の数式的な扱い

数式を使ってより詳しく選択律について説明する。
赤外分光法(光による直接の励起)においてその遷移確率は、$\int {{{\phi_f}^*}\hat{\vector{\mu}}\phi_i}d\tau$の2乗に比例する。$\phi_i$、$\phi_f$はそれぞれ始状態、終状態の波動関数で、$\hat{\vector{\mu}}$は双極子モーメント演算子である。永久双極子モーメント(平衡核座標での双極子モーメント)をもつ分子の場合は、振動によって$\hat{\vector{\mu}}$が変化する場合が多いため、その場合$\int {{{\phi_f}^*}\hat{\vector{\mu}}\phi_i}d\tau$は0でない値をとる。しかし、永久双極子モーメントを持たない分子の場合、光の電場方向に対して$\hat{\vector{\mu}}$が変化するような振動モードに対してのみ$\int {{{\phi_f}^*}\hat{\vector{\mu}}\phi_i}d\tau$が0でない値となって光吸収が許容になる。
一方、ラマン分光法において考えるべきは始状態と終状態の間での誘起双極子モーメントの変化である。誘起双極子モーメント$\vector{p}$は、
\begin{equation}
\def\vector#1{\mbox{\boldmath $#1$}}
\vector{p} = \it{\alpha_{\rho\sigma}}\vector{E}\
\end{equation}
\[
(\rho, \sigma = \it{x}, \it{y}, \it{z})
\] で表現される。$\it{\alpha_{\rho\sigma}}$は分極率テンソルの成分である。分極率テンソルとは分子に固有な2階の対称テンソル(対称行列)である。
\begin{equation}
\def\vector#1{\mbox{\boldmath $#1$}}
\vector{\alpha} = \left[
\begin{array}{rrr}
\alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\
\alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\
\alpha_{zx} & \alpha_{zy} & \alpha_{zz}
\end{array}
\right]\
\end{equation}
対称なテンソル(行列)であるとは、この場合、$\alpha_{xy} = \alpha_{yx}$かつ$\alpha_{xz} = \alpha_{zx}$かつ$\alpha_{yz} = \alpha_{zy}$であることと同値である。分極率というパラメータは分極のしやすさを表し、電子密度と関係がある。一般に電子密度が高い状態では分極しにくいが、電子密度が低い状態では分極しやすい。誘起双極子モーメントが変化するということは、分極率が平衡核座標近傍で変化するということであり、そのような振動に対してラマン散乱が起こり得る。例えば、上図に示した環呼吸運動では平衡核座標の近傍で分極率の変化が見られる。
分極率の変化を考えよう。分極率テンソルの成分$\alpha_{\rho\sigma}$を平衡核座標の近傍において基準座標$Q_k$で級数展開して、一次の項まで考えると、
\begin{equation}
\alpha_{\rho\sigma}\ = \alpha_{\rho\sigma}(0) + \sum_{k} {(\frac{\partial \alpha_{\rho\sigma}}{\partial Q_k})}_0 Q_k
\end{equation}
を得る。基準振動とはこの基準座標に沿って動く原子核の運動なので、ラマン活性となる条件は対象とする基準振動の基準座標$Q_k$に対して
\begin{equation}
{(\frac{\partial \alpha_{\rho\sigma}}{\partial Q_k})}_0 \neq 0
\end{equation}
なる分極率テンソルの成分$\alpha_{\rho\sigma}$が存在することである。関連書籍にはより詳細な内容が記してある。

 

共鳴ラマン効果

はじめに述べたように、散乱光のほとんどは弾性散乱光であり、ラマン散乱は弾性散乱に比べて微弱である。しかし、入射光として電子励起遷移に近い光を利用することで、仮想的な中間状態として電子励起状態を経由させることができる。この場合、特定の対称振動モードやその倍音が観測されることがある。これを共鳴ラマン効果と言う。また、共鳴ラマン散乱ではその中間状態に電子状態のハミルトニアンが関係してくるため、非共鳴ラマン散乱では禁制であるような振動モードであっても観測される場合がある。

関連記事

参考文献

Raman. C. V.; Krisgnan K. S. Nature, 1928, 121, 501-502. DOI:10.1038/121501c0

 

関連書籍

[amazonjs asin=”B011QCXMQ4″ locale=”JP” title=”ラマン分光法 (分光法シリーズ)”] [amazonjs asin=”4061571095″ locale=”JP” title=”赤外・ラマン分光法 (分光測定入門シリーズ6)”]

 

関連リンク

  1. Nanophoton corp
  2. spectrabase

 

ferrum

投稿者の記事一覧

自称化学者(科学者)のタマゴ。興味はざっくりと物理と化学の境界分野。

関連記事

  1. MOF-74: ベンゼンが金属鎖を繋いで作るハニカム構造
  2. 重医薬品(重水素化医薬品、heavy drug)
  3. 一重項分裂 singlet fission
  4. 固体NMR
  5. GHS(化学品の分類および表示に関する世界調和システム)
  6. カール・フィッシャー滴定~滴定による含水率測定~
  7. アゾ化合物シストランス光異性化
  8. ケミカルジェネティクス chemical genetics

注目情報

ピックアップ記事

  1. コルチスタチン /Cortistatin
  2. MEDCHEM NEWS 30-4号「ペプチド化学」
  3. ACSの隠れた名論文誌たち
  4. カブトガニの血液が人類を救う
  5. 核のごみを貴金属に 現代の錬金術、実験へ
  6. 技あり!マイルドにエーテルを切ってホウ素で結ぶ
  7. マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-
  8. 「優れた研究テーマ」はどう選ぶべき?
  9. 親子で楽しめる化学映像集 その1
  10. CSJジャーナルフォーラム「ジャーナルの将来像を考える」

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

四置換アルケンのエナンチオ選択的ヒドロホウ素化反応

四置換アルケンの位置選択的かつ立体選択的な触媒的ヒドロホウ素化が報告された。電子豊富なロジウム錯体と…

【12月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスのエステル化、エステル交換触媒としての利用

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

河村奈緒子 Naoko Komura

河村 奈緒子(こうむら なおこ, 19xx年xx月xx日-)は、日本の有機化学者である。専門は糖鎖合…

分極したBe–Be結合で広がるベリリウムの化学

Be–Be結合をもつ安定な錯体であるジベリロセンの配位子交換により、分極したBe–Be結合形成を初め…

小松 徹 Tohru Komatsu

小松 徹(こまつ とおる、19xx年xx月xx日-)は、日本の化学者である。東京大学大学院薬学系研究…

化学CMアップデート

いろいろ忙しくてケムステからほぼ一年離れておりましたが、少しだけ復活しました。その復活第一弾は化学企…

固有のキラリティーを生むカリックス[4]アレーン合成法の開発

不斉有機触媒を利用した分子間反応により、カリックスアレーンを構築することが可能である。固有キラリ…

服部 倫弘 Tomohiro Hattori

服部 倫弘 (Tomohiro Hattori) は、日本の有機化学者。中部大学…

ぱたぱた組み替わるブルバレン誘導体を高度に置換する

容易に合成可能なビシクロノナン骨格を利用した、簡潔でエナンチオ選択的に多様な官能基をもつバルバラロン…

今年は Carl Bosch 生誕 150周年です

Tshozoです。タイトルの件、本国で特に大きなイベントはないようなのですが、筆者が書かずに誰が…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP