[スポンサーリンク]

chemglossary

酵母還元 Reduction with Yeast

[スポンサーリンク]

ケトンのエナンチオ選択的な還元と言えば、CBS還元Noyori不斉還元などが知られていますが、それらと同様、古典的に知られている酵母還元について扱います。

古典的な例は、ベータケトエステルからベータヒドロキシエステルを得る反応や、βジケトンからβヒドロキシケトンを得る反応などが知られている。その他、単純なケトンの還元にも用いられる。現在では、リコンビナントなADH(Alcohol Dehydrogenase)を用いた反応が主流なため、また、先に述べた合成手法が開発されたため、酵母還元はほとんど用いられないが、歴史的には意義深い反応である。具体的には2000年ごろから大腸菌を用いたADHの大量発現系やGDHなどを用いた補酵素再生系が確立され、数多くのADHアイソフォームや様々なバクテリア由来のADHが単離、合成向けにBiocatalysis分野で使われ始めた。それ故、2000年以前の不斉合成では汎用されていた。

利点

  • 他の酵素や、バクテリアと比べて酵母は安価
  • 特に、ウイルスやバクテリアなどの滅菌処理が不要な環境(一般的な合成化学の研究室)で利用可能
  • 古典的に知られている反応であるため、簡単な化合物の場合、高エナンチオ選択的に目的物が得られる
  • グルコースなどの単純な基質を還元に用いて細胞内のNAD(P)Hの再生系に依存することができ、比較的高価なコファクターなどの添加が不要
  • 細胞の中に酵素やコファクターが存在するので、還元反応を触媒する比較的安定(タンパク質は補酵素が存在しないと不安定となる場合が多い)

欠点

  • 基本的に反応が遅い。
  • バクテリアが死滅していないものを使う場合は、基質がバクテリアの餌となる場合がある。
  • 酵母還元では、ある特定のdehydrogenaseの過剰発現株を用いない限り、酵母内の複数のDehydrogenaseが酵素として機能する。それぞれの酵素がR若しくはS体を優先的に与えることが知られているが、反応に供する化合物の構造や反応温度、基質濃度によってどちらの酵素がより優先的に働くかが決まる。よって、化合物によってはRとSを与える酵素のどちらの基質にもなりえることもあり、エナンチオ選択性が低下する。(この場合は、MVKやAllyl alcohol、thioesterやhalolactoneなどで一方の酵素を阻害することが可能であることもある。)
  • 基質濃度が高くなると、選択性が低下することがある
  • 基質の側鎖がかさ高くなる場合、反応が進行しない場合がある
  • 基質の水への溶解性が低い場合、反応が進行しない若しくはかなり遅くなる場合がある。(DMSOなどの溶媒を添加することも場合によっては可能である。)
  • 反応溶液は通常の有機化学の反応とは異なり、かなり粘性が高く、マグネティックスターラーでは酵母がすりつぶされてしまうことがあるので、撹拌効率などについても考慮し、必要な場合はメカニカルスターラーを用いる必要がある。
  • 臭い。抽出時にエマルジョンが発生し、特に大スケールでの反応は大変な場合がある。(振ったのちにセライトろ過などの方法や、量が多くない場合は、50 mLのファルコンチューブに分注し、遠心する。)

その他

  • 良い選択性が得られない場合、ADH(Alcohol Dehydrogenase,現在では両方のエナンチオマーに高能率で変換可能)などはキットが市販されているので購入して利用することが可能である。野依法やCBS法などを利用する。
  • Lipaseによる光学分割も化合物によっては視野に入れるべき場合もある。(基本的にLipaseはDKRをしないと、半分化合物を捨てるのでアトムエコノミカルでないのが欠点)
  • 選択性が一方の酵素の阻害により向上しない場合は、ホストを変更し、Pichia farinosaをはじめとする微生物を用いる。若しくは、各種ADHを過剰発現させたE coliなどを使うということもできるが、スタンダードな有機化学の研究室ではなかなかセットアップの関係で大腸菌の培養などは難しいので、発酵が可能な生化学系若しくは発酵学、Biosynthesis関連の研究室とのCollaborationを行う必要がある。

関連書籍

[amazonjs asin=”B077SKBNP9″ locale=”JP” title=”Biotransformations in Organic Chemistry: A Textbook (English Edition)”]

Gakushi

投稿者の記事一覧

東京の大学で修士を修了後、インターンを挟み、スイスで博士課程の学生として働いていました。現在オーストリアでポスドクをしています。博士号は取れたものの、ハンドルネームは変えられないようなので、今後もGakushiで通します。

関連記事

  1. クリックケミストリー / Click chemistry
  2. 一重項分裂 singlet fission
  3. 原子分光分析法の基礎知識~誘導結合プラズマ発光分析法(ICP-O…
  4. メタンハイドレート Methane Hydrate
  5. ポットエコノミー Pot Economy
  6. 酵素触媒反応の生成速度を考えるー阻害剤入りー
  7. 表現型スクリーニング Phenotypic Screening
  8. クライン・プレログ表記法 Klyne-Prelog Nomenc…

注目情報

ピックアップ記事

  1. 塩素 Chlorine 漂白・殺菌剤や塩ビの成分
  2. 文献管理のキラーアプリとなるか? 「ReadCube」
  3. 身近な食品添加物の組み合わせが砂漠の水不足を解決するかもしれない
  4. 歯車クラッチを光と熱で制御する分子マシン
  5. 第47回天然有機化合物討論会
  6. 秋田の女子高生が「ヒル避け」特許を取得
  7. 高脂血症薬がウイルス抑制/C型肝炎で厚労省研究班
  8. その化合物、信じて大丈夫ですか? 〜創薬におけるワルいヤツら〜
  9. 2023年化学企業トップの年頭所感を読み解く
  10. DFMS:ビス(ジフルオロメチルスルホニル)亜鉛

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年2月
 12
3456789
10111213141516
17181920212223
242526272829  

注目情報

最新記事

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

ミトコンドリア内タンパク質を分解する標的タンパク質分解技術「mitoTPD」の開発

第 631 回のスポットライトリサーチは、東北大学大学院 生命科学研究科 修士課程2…

永木愛一郎 Aiichiro Nagaki

永木愛一郎(1973年1月23日-)は、日本の化学者である。現在北海道大学大学院理学研究院化学部…

11/16(土)Zoom開催 【10:30~博士課程×女性のキャリア】 【14:00~富士フイルム・レゾナック 女子学生のためのセミナー】

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。11/16…

KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発』 ~水・生体環境下で優れた機能を発揮させるための材料・表面・デバイス設計~

 開講期間 令和6年12月10日(火)、11日(水)詳細・お申し込みはこちら2 コースの…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP