[スポンサーリンク]

chemglossary

フッ素のゴーシュ効果 Fluorine gauche Effect

[スポンサーリンク]

フッ素は全元素中で最大の電気陰性度(4.0)をもつため、C-F結合は高度に分極しており双極子的な安定化効果をもたらす。σ*C-F結合も低エネルギーとなるため隣接電子と相互作用しうる。このため配座におけるゴーシュ効果(gauche effect)が発現する[1-7]。

たとえば冒頭図の様に、1,2-ジフルオロエタンはanti配座よりもgauche配座が支配的となる。一方、1,2-ジクロロエタン、1,2-ジブロモエタンはanti配座が優勢になる。この非直感的な効果は、隣接C-H結合の超共役効果[σC-H→σ*C-F]が、電気的反発を乗り越えるほど強いとするとらえ方によって説明できる。これは片方のフッ素を他の電子求引基で置換しても同じ効果が得られることからも理解される。

応用例1: 有機触媒の設計および改良

下記のイミニウム触媒では、側鎖のフッ素ゴーシュ効果およびN+―F静電相互作用によって、π面遮蔽がより効果的な配座が優勢となり、良い性能を示す[8]。

X線像:CCDC 751360

下記Rovis触媒では、活性中心遠隔に存在するフッ素原子が不斉収率の向上に重要な役割を果たしている。これはσC-H→σ*C-F、σC-H→σ*C-N、π→σ*C-Fの多重超共役効果によってFと立体障害基(iPr)が擬アキシアルに立ち、効果的な立体遮蔽が実現するためと説明できる[9]。

図は論文[9]より引用

応用例2: 生物活性分子の配座設計

γ-アミノ酪酸(GABA)をフッ素化したアナログは、その立体配置に応じて生物活性を異にする。これはフッ素ゴーシュ効果によって伸長(extended)もしくは屈曲(bent)の配座優先性が変化するためと説明される[10]。

下記は環状ペプチドの配座規制目的にフッ素原子を導入した例である。これも大きな配座の違いが表れる[11]。

関連文献

  1. “The Fluorine Gauche Effect: A Brief History” Thiehoff, C.;  Rey, Y. P.; Gilmour, R. Isr. J. Chem. 2017, 91. doi:10.1002/ijch.201600038
  2. “The influence of fluorine in asymmetric catalysis” Cahard, D.;  Bizet, V. Chem. Soc. Rev. 2014, 43, 135. doi: 10.1039/C3CS60193E
  3. “Organofluorine Chemistry: Synthesis and Conformation of Vicinal Fluoromethylene Motifs” O’Hagan, D. J. Org. Chem. 2012, 77, 3689. DOI: 10.1021/jo300044q
  4. “The C–F bond as a conformational tool in organic and biological chemistry” Hunter, L. Beil. J. Org. Chem. 2010, 6, 38. doi:10.3762/bjoc.6.38
  5. “Understanding organofluorine chemistry. An introduction to the C–F bond”  O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308. doi:10.1039/b711844a
  6. “Fluorine Conformational Effects in Organocatalysis: An Emerging Strategy for Molecular Design” Zimmer, L. E.; Sparr, C.; Gilmour, R. Angew. Chem. Int. Ed. 2011, 50, 11860. doi:10.1002/anie.201102027
  7. “Deconstructing Covalent Organocatalysis” Holland, M. C.; Gilmour, R. Angew. Chem. Int. Ed. 2015, 54, 3862.  doi:10.1002/anie.201409004
  8. “The Fluorine‐Iminium Ion Gauche Effect: Proof of Principle and Application to Asymmetric Organocatalysis” Sparr, C.; Schweizer, W. B.; Senn, H. M.; Gilmour, R. Angew. Chem. Int. Ed. 2009, 48, 3065. doi:10.1002/anie.200900405
  9. ”Catalytic Asymmetric Intermolecular Stetter Reaction of Heterocyclic Aldehydes with Nitroalkenes: Backbone Fluorination Improves Selectivity” DiRocco, D. A.; Oberg, K. M.; Dalton, D. M.;  Rovis, T. J. Am. Chem. Soc. 2009, 131, 10872. DOI: 10.1021/ja904375q
  10. ”The enantiomers of syn-2,3-difluoro-4-aminobutyric acid elicit opposite responses at the GABAC receptor” Yamamoto, I.; Jordan, M. J. T.; Gavande,  N.; Doddareddy, M. R.; Chebib, M.; Hunter, L. Chem. Commun. 2012, 48, 829. doi:10.1039/C1CC15816C
  11. “Stereoselective Fluorination Alters the Geometry of a Cyclic Peptide: Exploration of Backbone‐Fluorinated Analogues of Unguisin A” Hu, X.-G.; Thomas, D. S.; Griffith, R.; Hunter, L. Angew. Chem. Int. Ed. 2014, 53, 6176. doi:10.1002/anie.201403071

関連書籍

[amazonjs asin=”3662147874″ locale=”JP” title=”Organofluorine Chemistry: Techniques and Synthons (Topics in Current Chemistry)”]

外部リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. シュレンクフラスコ(Schlenk flask)
  2. 元素戦略 Element Strategy
  3. デンドリマー / dendrimer
  4. 試験管内選択法(SELEX法) / Systematic Evo…
  5. 生物指向型合成 Biology-Oriented Synthes…
  6. 真空ポンプ
  7. 国連番号(UN番号)
  8. コールドスプレーイオン化質量分析法 Cold Spray Ion…

注目情報

ピックアップ記事

  1. 抗精神病薬として初めての口腔内崩壊錠が登場
  2. トビアス・リッター Tobias Ritter
  3. 有機反応を俯瞰する ー芳香族求電子置換反応 その 2
  4. 松本・早大教授の論文、学会は「捏造の事実無し」
  5. 第107回―「ソフトマター表面の物理化学」Jacob Klein教授
  6. ケムステイブニングミキサー2019ー報告
  7. ナノ粒子で疾病の発生を容易に追跡
  8. ナノってなんて素敵ナノ
  9. 一重項分裂 singlet fission
  10. 【ケムステSlackに訊いて見た④】化学系学生の意外な就職先?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

4種のエステルが密集したテルペノイド:ユーフォルビアロイドAの世界初の全合成

第637回のスポットライトリサーチは、東京大学大学院薬学系研究科・天然物合成化学教室(井上将行教授主…

そこのB2N3、不対電子いらない?

ヘテロ原子のみから成る環(完全ヘテロ原子環)のπ非局在型ラジカル種の合成が達成された。ジボラトリアゾ…

経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材室における研究開発専門職について~

我が国の化学産業を維持・発展させていくためには、様々なルール作りや投資配分を行政レベルから考え、実施…

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

第50回Vシンポ「生物活性分子をデザインする潜在空間分子設計」を開催します!

第50回ケムステVシンポジウムの開催告知をさせて頂きます!2020年コロナウイルスパンデミッ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP