[スポンサーリンク]

chemglossary

液体キセノン検出器

[スポンサーリンク]

宇宙に存在して質量は持つが光学的に直接観測できない物質がダークマター(暗黒物質)であり、それを検出する装置の一部が液体キセノン検出器である。ここでは、検出器の構造とその原理、キセノンを使う理由について解説する。

 

装置の構造

検出器の構造は下の図のようになっていて、中心に液体キセノン(約マイナス100℃)が入れらていて、その外側に光電子増倍管が配置されている。その検出器の外側は水で満たされている。

アメリカの検出器の構造

 

ダークマターがキセノン原子核と弾性散乱する際にエネルギーの一部を落とすか、キセノンの電子と衝突することで発光現象が起き、その光を光電子増倍管によって検出するのが測定原理である。外側を水で満たすのは、ガンマ線を遮蔽してノイズを低減するためである。ノイズの原因は様々で、水以外にもプラスチック板など様々な遮蔽物でノイズの低減が極限まで施されている。

発光の原理とキセノンを使う理由

上記のように、ダークマターが液体キセノンの容器に入射し衝突すると光が発生する(S1)、それと同時に電子がたたき出され検出器には電極がかけられているので、電子は陽極に引き寄せられて上部ガス状のキセノンと衝突し遅延光が発せられる(S2)。

発光の原理

液体キセノンを使う理由は下記のこと挙げられる

  1. シンチレーション光を発生し、その発光量が大きいこと
  2. キセノンの質量数が大きいこと
  3. アルゴン、クリプトンと違い、キセノンには有感領域での固有のバックグラウンドとなる長寿命のアイソトープがないこと

2に関して質量するが大きいとノイズを遮蔽する能力が高いことにつながる。これによりはダークマターを測定するのに有効な液体キセノンのエリア外でノイズを遮蔽するのに役立つ。3に関して、放射性同位体である39Arは数百年、81Krは、数十万年の半減期があるため、ノイズの原因となる。一方でキセノンの天然の同位体がなく、人工合成された同位体でも数十日と短いため、放射性同位体からのノイズが少ない。

キセノンは、希ガスであり0.087 ppmしか空気中に存在しない。酸素や窒素、アルゴンガスを空気分離によって精製する際の低沸点副生成物をさらに蒸留して高純度のキセノンガスは得られている。そのため非常に高価なガスで一キロ数十万円以上する。ダークマター観測では、キセノンの純度にも実験が左右されるため、精製装置によってキセノンの純度をさらに上げている。

世界の研究活動

いくつかのグループが、この方法でダークマターの検出に取り組んでいる。日本では、岐阜県飛騨市神岡鉱山内にXMASS実験施設があり、800Kgのキセノンが入った検出で測定を行っている。ただし、5から10トンのキセノンを使用する施設改修の計画があったが、予算のめどがたたかなかったことや他国ではすでにより高感度の施設の計画があることから来年末で観測プロジェクトを終了することが決まった

イタリアには3トンのキセノンを使った施設で観測が試みられていて、アメリカでは、7トンから20トンのキセノンを使った観測施設が2020年に完成する。キセノンが多い検出器ほど検出感度が高いが、世界中で年間40トンしかキセノンは生産されておらず、半導体製造や人工衛星のイオンエンジンなどほかの用途でも需要が高まっているため、大量のキセノンを調達することは容易ではない。

一方で、キセノンを使わない検出法も研究されていて超流動ヘリウムを使った研究結果が最近報告された。これにより軽いダークマターを観測できると研究者らは主張している。

関連書籍

[amazonjs asin=”4315519626″ locale=”JP” title=”ダークマターとダークエネルギー―宇宙の96%を占める未確認の質量とエネルギー (ニュートンムック Newton別冊)”] [amazonjs asin=”B01HCOSBPW” locale=”JP” title=”やさしくわかる 周期表と元素”]

関連リンク

  • XMASS:XMASS公式サイト、ダークマターの解説のほか、施設内部をVRで見ることができ、スーパーカミオカンデと坑道でつながっていることがわかる。検出器は、円柱ではなく十二面体構造をしている。
  • The LZ Dark Matter Experiment:アメリカの研究チームLZの公式サイト
  • The XENON experiment:イタリアの研究チームXENON1Tの公式サイト
Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. スナップタグ SNAP-tag
  2. 有機触媒 / Organocatalyst
  3. フラストレイティド・ルイスペア Frustrated Lewis…
  4. 二水素錯体 Dihydrogen Complexes
  5. 銀イオンクロマトグラフィー
  6. 高速液体クロマトグラフィ / high performance …
  7. 抗体-薬物複合体 Antibody-Drug Conjugate…
  8. 【金はなぜ金色なの?】 相対論効果 Relativistic E…

注目情報

ピックアップ記事

  1. ケテンの[2+2]環化付加反応 [2+2] Cycloaddition of Ketene
  2. 研究留学術―研究者のためのアメリカ留学ガイド
  3. 余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ
  4. 求電子的インドール:極性転換を利用したインドールの新たな反応性!
  5. マレーシア警察:神経剤VX検出で、正男氏は化学兵器による毒殺と判定
  6. 触媒のチカラで不可能を可能に?二連続不斉四級炭素構築法の開発
  7. カルボン酸、窒素をトスしてアミノ酸へ
  8. 化学者の卵、就職活動に乗りだす
  9. 有機レドックスフロー電池 (ORFB)の新展開:高分子を活物質に使う
  10. 高専シンポジウム in KOBE に参加しました –その 2: 牛の尿で発電!? 卵殻膜を用いた燃料電池–

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー