[スポンサーリンク]

chemglossary

指向性進化法 Directed Evolution

[スポンサーリンク]

指向性進化法(directed evolution)とは、自然界の淘汰モデルを模す形で、タンパク質・核酸などの機能を目的に応じて向上させていく実験的手法である。本手法による主に金属酵素の開発に大きく貢献したとして、F. H. Arnoldへの2018年度ノーベル化学賞の授与が決定した。

具体的には、下記のサイクル1~4を繰り返すことで優れた機能を持つ物質を見いだしていく。

  1. 変異導入:遺伝子を多様化してライブラリを作る
  2. 遺伝子発現:遺伝子情報をタンパク質の形にする
  3. 選択:求める機能に最も適する個体を選び出す(これが実験系のデザインで一番重要
  4. 増幅:個体の持つ遺伝子情報を複製し、ライブラリの鋳型とする

下図はこれをタンパク質に対して適用したサイクル例である。

実際に上手く働く実験系を組むためには、多くの技術的課題を解決しなくては成らず、それぞれのステップごとに、注意すべき点がある。それらの詳細はD. Liu, M. T. ReezやD. Hilvert、F. H. Arnoldが本領域のキープレーヤーであるので、彼、彼女らの総説[1,2]を参照されたい。

実際の研究例

以下にDirected Evolutionのいくつかの例を示す。

すでにケムステの記事で取り上げられているように、Liuらが開発した、Phage-Assisted Continuous Evolution (PACE)などが、選択を自動化することに成功した一例である。詳細はこちらの記事を参照。

また、指向性進化法の開発の貢献としてF. H. Arnoldに2018年度ノーベル化学賞が授与されることとなったが、Arnold研究室の業績についてはこちらの記事やF. H. Arnoldの紹介に関してはこちらの記事を、ノーベル賞の受賞内容などについてはこちらの速報記事を参照。

Pharge display関連を含めた進化分子工学についても同様の記事が出ているので、こちらを参照。

一般的に酵素の改変に本法を用いる場合、通常のタンパク質の進化と同様もしくはそれ以上に酵素の活性(反応性と選択性)をどのようにアウトプットとして出力するかのデザインが非常に重要である。というのも、多くの変異は全く活性に影響しない、もしくは、活性を失わせる変異であり、活性の高い変異を見つけるためのスクリーニングにはかなり多くのサンプル数が必要である。そのため、HPLCやGCなどで酵素活性を測定するには無理がある。例えば、Hilvertらは自前で開発したマイクロ流体装置を用い、ナフタレン誘導体の蛍光を指標に反応のスクリーニングすることで、ほとんど活性を示さないタンパク質から高活性なAlderase[3]やKnoevenagel反応を触媒する酵素[4]などの作成に成功している。また、Turnerらは化合物の沈殿を指標に反応の進行を観察することで、プレートでのアッセイ系の確立に成功し、高活性な酵素を作成することに成功している[5]。その他、無蛍光性の分子のエステルを基質としてごくわずかなエステラーゼ活性によってリリースされる蛍光分子による蛍光上昇を指標に酵素の改変を行った例など、opticsなどを使った方法が主流になっているが、その場合反応の追跡はできたとしても、反応の選択性(ジアステレオ、エナンチオ)の追跡が困難である場合もあるので、そう言った反応の開発には創意工夫が必要である。

そのほか、Baker[6]やHilvert[7]は近年独立に、ウイルスの外骨格を覆うカプシド様タンパク質の進化について報告している。ウイルスはRNAや自分自身の生命維持に必要な物質をカプシドというタンパク質で覆うことで存在している。彼らはカプシド様構造を形成しうるウイルス由来でないタンパク質をコードするRNA変異体のライブラリーを作成、発現させたタンパク質でそれぞれのRNAを大腸菌内で覆わせた。その後、できたカプシドに対して様々な刺激(熱やRNAアーゼなど)を与えてやることにより、それらの刺激に安定なカプシドタンパク質をコードするRNAのみが残るように選択圧をかけた。さらに、選択に残ったRNAに対してさらに変異を加えるたRNAライブラリーを作成し、発現、選択、のサイクルを構築することで、強固なカプシドをコードするRNAを選抜することに成功し、RNA-タンパク質複合体の分子進化を達成した。

他の方法との比較とタンパク質改変の今後

ちなみに指向性進化法によって全てのタンパク質の変異体を得ようと考える場合、天文学的な数のタンパク質を合成する羽目になるので(例えば、アミノ酸100個繋がっているタンパク質の場合、全ての点変異体の数は20100個となる。ちなみに観測可能宇宙内の原子数は約1080)現実的ではない。その点ではSite Directed Mutagenesisなどの方が、数の上では現実的である。ただし、Directed Mutation関連の研究では全く関係ない様に考えられる遠隔位に存在するアミノ酸変異なども変異がいくつか集まることにより、大きなタンパク質の構造および機能変化となり観測されることがよくあるので、網羅的なDirected Evolutioinの方が人間が考えつかない様な点変異を導入することができるという意味では優れているといえる。今後は、Bakerなどが行っているIn silicoによるタンパク質や酵素の構造とその機能推定の様な方法論との組み合わせなどで、新たな機能を有するタンパク質や酵素が効率よく作成されると思われる。

関連動画

関連文献

  1. “Beyond directed evolution–semi-rational protein engineering and design.” Lutz, S. Curr Opin Biotechnol. 2010, 21, 734–743. doi:10.1016/j.copbio.2010.08.011
  2. “Methods for the directed evolution of proteins” Packer, M. S.; Liu, D. R. Nat. Rev. Genet. 2015, 16, 379–394. doi:10.1038/nrg3927
  3. Obexer, R.; Godina, A.; Garrabou, X.; Mittl, P. R. E.; Baker, D.; Griffiths, A. D.; Hilvert, D. Nat. Chem. 2016. 9, 50. DOI: 10.1038/nchem.2596
  4. Garrabou, X.; Wicky, B. I. M.; Hilvert, D. J. Am. Chem. Soc. 2016, 138, 6972. DOI:10.1021/jacs.6b00816 この場合は共役ジエンによるコロニーの発色を基準としてスクリーニングをかけている
  5. Willies, S. C.; Galman, J. L.; Slabu, I.; Turner, N. J. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150084. DIO: 10.1098/rsta.2015.0084
  6. Butterfield, G. L.; Lajoie, M. J.; Gustafson, H. H.; Sellers, D. L.; Nattermann, U.; Ellis, D.; Bale, J. B.; Ke, S.; Lenz, G. H.; Yehdego, A.; Ravichandran, R.; Pun, S. H.; King, N. P.; Baker, D. Nature 2017, 552, 415. DOI: 10.1038/nature25157
  7. Terasaka, N.; Azuma, Y.; Hilvert, D. Proc. Natl. Acad. Sci. 2018, 115 (21), 5432. DOI:10.1073/pnas.1800527115

関連書籍

[amazonjs asin=”B06WP5YZDF” locale=”JP” title=”Directed Enzyme Evolution: Advances and Applications”][amazonjs asin=”B01LYSBS84″ locale=”JP” title=”Directed Evolution of Selective Enzymes: Catalysts for Organic Chemistry and Biotechnology”][amazonjs asin=”1493910523″ locale=”JP” title=”Directed Evolution Library Creation: Methods and Protocols (Methods in Molecular Biology)”]

ケムステ関連記事

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 光線力学療法 Photo Dynamic Therapy (PD…
  2. 導電性ゲル Conducting Gels: 流れない流体に電気…
  3. Spin-component-scaled second-ord…
  4. 卓上NMR
  5. 特殊ペプチド Specialty Peptide
  6. 【金はなぜ金色なの?】 相対論効果 Relativistic E…
  7. 超臨界流体 Supercritical Fluid
  8. ケミカルバイオロジー chemical biology

注目情報

ピックアップ記事

  1. マイクロ波化学の事業化プラットフォーム 〜実証設備やサービス事例〜
  2. Pixiv発!秀作化学イラスト集【Part 2】
  3. 逆転写ポリメラーゼ連鎖反応(RT-PCR; reverse transcription PCR)
  4. ジ-π-メタン転位 Di-π-methane Rearrangement
  5. カンファー(camphor)
  6. マイクロ波プロセスの工業化 〜環境/化学・ヘルスケア・電材領域での展開と効果〜(1)
  7. 研究室で役立つ有機実験のナビゲーター―実験ノートのとり方からクロマトグラフィーまで
  8. えっ!そうなの?! 私たちを包み込む化学物質
  9. 2013年就活体験記(1)
  10. 石谷 治 Osamu Ishitani

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年11月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP