[スポンサーリンク]

chemglossary

リード指向型合成 / Lead-Oriented Synthesis

[スポンサーリンク]

有機合成が長足の発展を遂げる一方、既存の合成手法はdrug-likeな骨格を効率良く生み出すものではないとされている。必然としてヒット/リード発見用ライブラリの構成数は増え、無駄うちが多くなる傾向にある。そのため現場視点からは、「質の高いライブラリ構築」「ドラッグライクネスに富むライブラリ構築」を実現する方法論が求められている。

リード指向型合成(Lead-Oriented Synthesis, LOSは、GlaxoSmithKlineのグループから提案された最新創薬コンセプトの一つである[1]。一言でまとめると「薬になりやすい構造を狙って合成できる方法論を積極的に開発しよう」という主張である。

低分子創薬の構造展開にまつわる経験則と統計的事実

一般論として、リード最適化を推し進めると脂溶性(logP)と分子量(MW)は増していく傾向にある。しかしこれは必ずしも開発成功確率を上げる方向には寄与しない。これを適度に押しとどめるためのガイドラインはあると有益である。例えば以下のような指針が妥当性高いものとして経験的に受け入れられている。

LOS_1

  • リピンスキーの”ルールオブファイブ”  (MW < 500; logP < 5; H-bond donor <5; H-bond acceptor < 10)
  • 過度に大きな脂溶性(logP)とoff-target数は相関がある。過度に小さなlogPも膜透過性の面で不都合がある。MW<400の範囲では 1< logP < 3がリードとして適する。
  • 分子に重原子をひとつ付ける毎に、約10倍のオーダーで生物学的に関連する分子数が増える。
  • 芳香環の数(nAr)を3つより増やすのは好ましくない。
  • sp3炭素含有率(Fsp3)が大きいほど開発可能性は高まる。
  • 不安定官能基・反応性官能基・レドックス媒体になる構造は使用を避けるべき。

勿論あくまで目安なので、これから外れるものも存在する(たとえばPPI阻害剤などは典型)。それ以外に外れるものは、得てして特殊なトランスポーターを介して輸送されるものか、その特性的不利を超越するほど特別な生物学的機能を有することが多い。ゆえにこの原則からかけ離れているだけの構造を探索する指針は、そもそも論外であることが多い。

合成法の欠如がもたらすドラッグライクネスからの乖離

現在主流の合成法を使ったライブラリ構築は、自然とドラッグライクネスから離れていきがちであるという問題を抱えている。この是正は合成化学者が直接貢献できる問題解決と言える。

たとえばF(sp3)値と臨床試験生存率の相関傾向から、従来型クロスカップリング(sp2炭素標的)主体の構造展開にはそもそも開発リスクがあることも合理化される。こういった技術に依存するコンビナトリアル化学は、上記指針から遠ざかる方向にしばしば向かうため、医薬探索効率が悪くなる。

市販化合物の>99%はlead-likenessを満たしていない。低コストで大量合成可能な合成法に制限があるため、分子スクリーニングライブラリが多様性を欠く現実を反映していると捉えることができる。

化合物ライブラリは設計時点から予想されるよりも高LogP値化合物を多く含んでしまう傾向がある(higher logP drift)。設計通りのライブラリを準備しようとしても、極性の高い化合物はしばしば合成・変換に失敗してしまうため、ライブラリから欠損していく確率が高いためである。既存の合成手法は極性官能基をもつものに広く適用可能なものが少ないとも言い換えられる。

Lead-Oriented Synthesis(LOS)とは

LOSは「医薬開発・最適化に活用可能な分子特性」を有する分子群を供給可能とする合成法と定義される。

LOSを体現する反応特性は、以上の議論を踏まえると以下のようにまとめられる。

  • 幅広いlead-likeな化合物構造を供給できる
  • 幅広い分子配列に対して適用可能であり、安価で高効率に変換を行える反応条件
  • 過度なlopP driftを引き起こさない
  • 幅広い極性官能基に対して耐性がある
  • 多数の求電子部位や反応中心を生じないような分子を供給できる

小さく極性な分子の合成が大きく非極性な分子の合成に比べて難しいこと、および上述のlogP driftを考慮すると、極性官能基許容性がおそらくもっとも重要で、また未成熟な要素である。こういった方法論は、水中化学反応、保護基フリー合成の発展を推し進める方向で進歩が期待できる。

関連論文

  1. “Lead-Oriented Synthesis: A New Opportunity for Synthetic Chemistry”  Nadin, A.; Hattotuwagama, C.; Churcher, I. Angew. Chem. Int. Ed. 2012, 51, 1114. DOI: 10.1002/anie.201105840
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. Spin-component-scaled second-ord…
  2. リピンスキーの「ルール・オブ・ファイブ」 Lipinski…
  3. 定量PCR(qPCR ; quantitative PCR)、リ…
  4. 試験管内選択法(SELEX法) / Systematic Evo…
  5. メビウス芳香族性 Mobius aromacity
  6. 抗体-薬物複合体 Antibody-Drug Conjugate…
  7. ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert…
  8. 固体NMR

注目情報

ピックアップ記事

  1. 実験白衣を10種類試してみた
  2. 「ハーバー・ボッシュ法を超えるアンモニア合成法への挑戦」を聴講してみた
  3. 光親和性標識法の新たな分子ツール
  4. 研究動画投稿で5000ユーロゲット?「Science in Shorts」
  5. ノンコーディングRNA 〜 RNA分子の全体像を俯瞰する〜
  6. 社会に出てから大切さに気付いた教授の言葉
  7. 有機アジド(1):歴史と基本的な性質
  8. ブラッド・ペンテルート Bradley L. Pentelute
  9. “防護服の知恵.com”を運営するアゼアス(株)と記事の利用許諾契約を結びました
  10. 科学英語の書き方とプレゼンテーション (増補)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

フッ素が実現する高効率なレアメタルフリー水電解酸素生成触媒

第638回のスポットライトリサーチは、東京工業大学(現 東京科学大学) 理学院化学系 (前田研究室)…

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー