[スポンサーリンク]

chemglossary

陽電子放射断層撮影 Positron Emmision Tomography

[スポンサーリンク]

特定の分子性プローブを用い、生物学的過程を分子または細胞レベルで可視化する分子イメージングは、疾病の早期発見/早期検出、評価、疾病のリアルタイムモニタリング、薬効研究にとって強力なツールとなる。

現在最も高感度とされるイメージング法の一つに、陽電子放射断層撮影法 (positron emission tomography, PET)がある。これは陽電子放出核種でラベル化された分子を用い、この対消滅で放出されるγ線を検出することで、分子の3次元局在を見積もる手法である。

PETは臨床診断研究や基礎研究、ラットや霊長類を用いた前臨床試験に使われてきた。近年は、個別化医療を最終目的とした研究に用いられている。

原理

陽電子は核から放出されると、周辺の物質/細胞組織内を浮遊して、電子と対消滅する。対消滅では511 keVのエネルギーを持つ、2つのγ線が同時に正反対の方向に放出される。これをサンプル周囲に並べておいた検出器で検出する(図1)。2つの検出器が同時にガンマ線を検出した場合、対消滅はその2点を結ぶ線上で起こったことになる。これら情報蓄積から、放射線の分布を時間の関数として得ることでイメージングする。PETでは絶対単位(Bq/mL)で観測結果が得られるのも利点の一つである。

図1:PET装置の概要(Wikipediaより引用)

図1:PET装置の概要(Wikipediaより引用)

ちなみにこの陽電子浮遊距離をpositron rangeとよび、放射性核種によって異なる(図2)。これが短いほど陽電子がプローブ近傍に留まることとなり、結果としてPETの分解能は向上する。

図1:PETの原理(文献[1]より)

図2:PETの原理(文献[1]より)

PETに使用される放射性核種

PETでは、C, N, Oなど生体分子の主成分である原子を放射性核種として用いることができる(図3)。このため、ラベル化の有無で物理学的・生物学的性質に差が無い分子プローブの創製が可能となる。

PETで使用される核種の中では18Fが最も優れた物理学的性質を有している。陽電子エネルギーが最も小さく分解能が高いこと、半減期が110分と長いため、製造・運搬しやすいという利点がある。

PET_2

図3:PETに汎用される放射性核種とその物理化学的性質(文献[1]より)

18Fの分子導入の際には、オリジナル分子のHやOHをFで置き換えることが多い。原子半径がHと似ているために分子サイズの点ではほぼ同様だが、電子求引性に起因して性質が異なることがほとんどである。このようなプローブの代表例としては、[18F]6-Fluoro-L-DOPA、[18F]フルオロデオキシグルコースなどがある。

11Cは半減期が20.3 minなので、体内半減期が短い化合物のラベリングに適しており、短い間隔をあけながら連続して調査する目的に使用できる。欠点はサイクロトロンのある施設でしか使用できないことである。

分子プローブの合成戦略

PETプローブは、人体用・動物用、共に高い放射化学的純度(通常>95%)が求められ、HPLCによる生成を経て使用される。

陽電子放出核種には半減期が存在するため、高速に終了する化学反応を用い、かつ分子合成の終盤で導入を行う必要がある。理想的には、半減期の2〜3倍以内の時間で合成が完結することが望ましい。近年ではマイクロリアクターを用いることで反応速度の向上と、試薬/溶媒の減量が試みられている。

11Cラベル化では、11CH3Iを製造し、メチル化、または11C-Cカップリングを経てプローブに導入される。

18Fラベル化では、18F2に由来する18F-求電子的フッ素化が用いられる。F2は反応性が高すぎるため、求電子試薬に誘導化して用いることが多い。また、 18Fアニオンの生成を利用した求核的フッ素化も用いられる。18Fアニオンの水中での求核性は低く、求核置換反応に適さないため、アルカリ金属クリプタンド塩、または4級アンモニウム塩に変換して用いられる。

近年では陽電子を放出しない19Fを一旦ホウ素置換し、その後18Fに置き換えるという経路を実現する新しい方法論も開発されている(図4)。

sr_T_Niwa_2

図4:PETプローブ合成簡便化を指向した脱フッ素ホウ素化

 

関連書籍

[amazonjs asin=”0387403590″ locale=”JP” title=”PET: Molecular Imaging and Its Biological Applications”][amazonjs asin=”4320057937″ locale=”JP” title=”脳のイメージング (ブレインサイエンス・レクチャー)”]

関連文献

  1. “Molecular Imaging with PET” Ametamey, S. M.; Honer, M.; Schubiger, P. A.  Chem. Rev. 2008, 108, 1501. DOI: 10.1021/cr0782426

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. デンドリマー / dendrimer
  2. UiO-66: 堅牢なジルコニウムクラスターの面心立方格子
  3. 分子の点群を帰属する
  4. 真空ポンプ
  5. キレート効果 Chelate Effect
  6. MOF-5: MOF の火付け役であり MOF の代名詞
  7. レドックスフロー電池 Redox-Flow Battery, R…
  8. コールドスプレーイオン化質量分析法 Cold Spray Ion…

注目情報

ピックアップ記事

  1. カンブリア爆発の謎に新展開
  2. 化学大手9月中間 三井化学と旭化成が経常減益
  3. アルキンの水和反応 Hydration of Alkyne
  4. 太陽電池バックシートの開発と評価【終了】
  5. 2009年10大化学ニュース【Part2】
  6. 住友化学、液晶関連事業に100億円投資・台湾に新工場
  7. 第165回―「光電変換へ応用可能な金属錯体の開発」Ed Constable教授
  8. リンダウ会議に行ってきた①
  9. 深紫外光源の効率を高める新たな透明電極材料
  10. 男性研究者、育休を取る。

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP