[スポンサーリンク]

chemglossary

ソーレー帯 (Soret band) & Q帯 (Q band)

[スポンサーリンク]

両者ともに、一般的には吸収スペクトルを帰属する際に用いられる用語である。この帯域に吸収を持つ色素にはポルフィリン、フタロシアニン等がある。ポルフィリンがSoret帯で強い吸収を示す(Q帯の吸収は小さい)のに対し、フタロシアニンはQ帯で最も強い吸収を示す。

 ソーレー帯

ソーレー帯、Soret band、Soret peakとも言う。可視光の400 nm付近の紫から青色領域のことを指す。発見者であるジャック・ルイス・ソーレー(Jacques-Louis Soret)[1]にちなんで命名された。
例として生体内酵素であるCytochrome P450は、種々の金属を含んだポルフィリン環を酵素内に有しており、通常の酵素では見られない長波長領域に吸収を示す。

 

Q帯

Q帯は、600 nmから900 nmの波長の光領域に対応する。フタロシアニンは、700 nm付近のQ帯に鋭い極大吸収を有する。金属を含むフタロシアニンでは一本の吸収帯を示すが、無金属体や、置換基の導入などにより対称性の下がったフタロシアニンのQ帯のピークは、軌道の縮退が解けるために分裂する(下記)。

 

 自由電子モデルによる分子軌道

ポルフィリンやフタロシアニンのπ共役系は16員環で18電子を有している。分子軌道による解釈では、最低軌道以外を除く準位にはそれぞれ一次独立な二つの軌道が存在し、これらは縮退した組をなしている。これらの軌道にエネルギーの低い軌道から順に電子を入れていくと、HOMOはml =±4、LUMOはml =±5になる。

自由電子モデル

このモデルでHOMOからLUMOへの電子遷移を考えてみると、Δml = ±1とΔml = ±9という二通りが考えられる。エネルギー差を見ると同じように見えるが、電子間相互作用の違いにより、全角運動量の大きいΔml = ±9 の方がエネルギーが低い。このように二組の励起状態が得られる。ポルフィリン、フタロシアニンの可視・赤外領域に現れる吸収(Q帯)と紫外領域に現れる吸収(Soret帯)、はそれぞれΔml = ±9、Δml = ±1の励起状態に帰属される。

Δml は、角運動量に対する量子数。

Q帯という命名は、角運動量Δml = ±9の9、つまり日本語の”きゅう”に由来する。

 

参考文献

フタロシアニンの-化学と機能-

Avatar photo

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. 全合成 total synthesis
  2. ヤーン·テラー効果 Jahn–Teller effects
  3. クライン・プレログ表記法 Klyne-Prelog Nomenc…
  4. グリーンケミストリー Green Chemistry
  5. メタンハイドレート Methane Hydrate
  6. 核酸合成試薬(ホスホロアミダイト法)
  7. カール・フィッシャー滴定~滴定による含水率測定~
  8. エピジェネティクス epigenetics

注目情報

ピックアップ記事

  1. 可視光を吸収する配位子を作って、配位先のパラジウムを活性化する
  2. 有機合成化学協会誌2022年2月号:有機触媒・ルイス酸触媒・近赤外光応答性ポルフィリン類縁色素・アリルパラジウム中間体・スルホン・ポリオキソメタレート
  3. 電気化学的一炭素挿入反応でピロールからピリジンを合成~電気化学的酸化により、従来と異なる位置への炭素挿入を可能に~
  4. Guide to Fluorine NMR for Organic Chemists
  5. ゾイジーンが設計した化合物をベースに新薬開発へ
  6. ガボール・ソモライ Gabor A. Somorjai
  7. 未来博士3分間コンペティション2021(オンライン)挑戦者募集中
  8. マシュー・ゴーント Matthew J. Gaunt
  9. ゲノムDNA中の各種修飾塩基を測定する発光タンパク質構築法を開発
  10. 留学せずに英語をマスターできるかやってみた(4年目)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年12月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

ブテンを原料に天然物のコードを紡ぐ ―新触媒が拓く医薬リード分子の迅速プログラム合成―

第 687回のスポットライトリサーチは、東京大学大学院 有機合成化学教室 (金井…

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP