[スポンサーリンク]

chemglossary

二光子吸収 two photon absorption

[スポンサーリンク]

二光子吸収とは二個の光子を同時に吸収する励起過程である。その遷移レートは励起光強度の二乗に比例するため、集光レーザービームを用いる事により、μmレベルで空間選択的に分子を励起することが可能である。また、遷移エネルギーの半分のエネルギーの光子を用いるため、近赤外光で励起することが可能である。生体組織透過性の高い長波長の光を用いる事が出来るため、バイオ分野での研究にも用いられている。

 

歴史

1930年代にMaria Goppert-Mayer により理論的に提唱されたが、当時は存在し得ない現象であるとされていた。実験的に初めて観測されたのは1961年である。レーザーの進歩とともに二光子吸収の研究は盛んになっていき、1990年代には、二光子吸収蛍光顕微鏡が開発されるなど、現在では応用研究も盛んである。

Maria Goppert-Mayerの名にちなんで、二光子吸収の強度を表す単位としてGMが用いられている。

Maria Göppert-Mayer

写真:Maria Goppert-Mayer

一光子吸収と二光子吸収の違い

二光子吸収では、二つの光子が同時に相互作用する事になるので、レーザー強度の2乗に比例する。一方、一光子吸収は、レーザー強度とは直線的な比例関係にある。

分子の一光子吸収の強さはモル吸光係数に比例するが、二光子吸収の場合には二光子吸収断面積が用いられる。つまり、分子サイズが同じである場合二光子吸収断面積が大きい方が有利である。

中心対称性分子については、一光子吸収と二光子吸収では異なったパリティを持つ励起状態への遷移になる。異なった遷移状態なので一光子吸収のピーク波長を2倍にしても必ずしも二光子吸収のピーク波長と一致しない。対称性分子では、強い二光子吸収ピークは一光子吸収ピークの2倍よりも短波長側に観測される。

2光子吸収図

(図は論文1より抜粋)

 

分子設計指針

二光子吸収が実験的に初めて観測されたのは、1963年のことだが、その構造活性相関が明らかにされたのは、それから何年も後であった。理論的な計算および実験事実より、以下のような条件を満たす分子が2光子吸収を起こしやすいとされる。

  1. 長いπ共役系を有する分子(π電子の数が多い分子)
  2. π共役系の末端にドナー、アクセプターを有する分子

実験事実より、A-π-D-π-Aよりも、中心に電子不足な構造を有するD-π-A-π-Dの方が良いとされている(A:accepter、D:donor)。中心に電子豊富な構造を有するA-π-D-π-Aは、その不安定性のため、あまり研究が進んでいない。

  1. 中心対称な分子
  2. 一光子吸収帯と二光子吸収帯の近い分子
  3. 中心のコア部分のコンフォメーションが固定されていた方が良い

二光子吸収は、分子中心部分のπ bridgeのコンフォメーションにも非常に影響を受ける。一般には、コンフォメーションが固定されている方が良いとされている。

 

2光子吸収center core

  1. Vinylene (sp2) リンカーとEthynylene (sp)リンカーの比較

ethynyleneリンカーはvinyleneリンカーに比較して、共役が弱い。それは、C(sp1)とC(sp2) の結合において、π–πとπ*–π* エネルギーに差があるためである。しかし、二光子吸収の場合ではこの寄与は小さい。

また、ポルフィリンをリンカーで架橋する場合では、むしろethynyleneリンカーの方が優れている。それは、ethynyleneリンカーの方がフレキシビリティーが低く、ねじれて共役が切れてしまうことが無いからである。

 

2光子吸収linker

 

応用

二光子励起顕微鏡

2光子励起顕微鏡

(図は論文1より抜粋、一部筆者改変)

二光子励起顕微鏡では、生体透過性の良い長波長のレーザーを用いるため、通常の顕微鏡では観測できない、生体深部の組織の観測が可能である。一光子励起では、レーザーの強度に応じて、多くの空間で蛍光が励起されるのに対し、二光子励起では、光子密度の極めて高い焦点面のみを励起する事が出来る。

 

参考文献

[1] Angew. Chem. Int. Ed. 2009, 48, 3244 – 3266 DOI: 10.1002/anie.200805257

Avatar photo

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. クオラムセンシング Quorum Sensing
  2. 不斉触媒 Asymmetric Catalysis
  3. 非リボソームペプチド Non-Ribosomal Peptide…
  4. コンビナトリアル化学 Combinatorial Chemis…
  5. トリメチルロック trimethyl lock
  6. メソリティック開裂 mesolytic cleavage
  7. 並行人工膜透過性試験 parallel artificial m…
  8. 試験管内選択法(SELEX法) / Systematic Evo…

注目情報

ピックアップ記事

  1. Excelでできる材料開発のためのデータ解析[超入門]-統計の基礎や機械学習との違いを解説-
  2. 【9月開催】第1回 マツモトファインケミカル技術セミナー 有機チタン、ジルコニウムが使用されている世界は?-オルガチックスの用途例紹介-
  3. ⾦属触媒・バイオ触媒の⼒で⽣物活性分⼦群の⾻格を不⻫合成
  4. 樹脂コンパウンド材料におけるマテリアルズ・インフォマティクスの活用とは?
  5. 男性研究者、育休を取る。
  6. スティーヴン・バックワルド Stephen L. Buchwald
  7. 国際化学オリンピック2016でもメダルラッシュ!
  8. 光/熱で酸化特性のオン/オフ制御が可能な分子スイッチの創出に成功
  9. 元素のふしぎ展に行ってきました
  10. 第53回「すべての化学・工学データを知識に変える」金子弘昌准教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年11月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

第50回Vシンポ「生物活性分子をデザインする潜在空間分子設計」を開催します!

第50回ケムステVシンポジウムの開催告知をさせて頂きます!2020年コロナウイルスパンデミッ…

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP