[スポンサーリンク]

chemglossary

原子間力顕微鏡 Atomic Force Microscope (AFM)

[スポンサーリンク]

原子間力顕微鏡(Atomic Force Microscopy;AFM)とは、走査型顕微鏡の一種である。試料と探針間に働く原子間力を検出することによって、試料表面を原子レベルで可視化する技術。

試料表面を探針(tip)でなぞると、試料との間に原子間力(引力)が生じる。その力の大きさをカンチレバー(Cantilever)の”たわみ”とし
て検出する。たわみ具合はレーザー光の反射角から精密に見積もることができる。このようにして、試料表面の凹凸を画像化する(下図)。同様
の測定ができる走査型電子顕微鏡(STM)に比べ、導電性のない材料にも適用可能という利点を持つのが特徴である。

非接触型原子間力顕微鏡(Non-contacting Atomic Force Microscope: NC-AFM)では、探針を試料上空で上下振動させて走査し、探針-試料間距離に応じて変化する振動パラメータ変化を検出する。分解能などさまざまな点で接触型よりも優れており、原子レベルの解像度を誇る。

AFM_1.gif
(画像:Aglient.com)

2009年にIBMの研究者らは、一酸化炭素(CO)を先端に結合させた探針を用い、NC-AFMの分解能を大幅に向上させることに成功した[1]。分子軌道が存在する場所においては、CO分子との間にパウリの排他原理に基づく斥力が働くため、これを検出することで、化学結合までをも可視化できるようになった。以下の写真は彼らのグループによって撮影されたペンタセン分子のをAFM像である。

AFM_pentacene_1.jpg

鮮明なAFM画像を撮影するには、ノイズの影響を最小限にすべく、超高真空・極低温で測定を行う必要がある。

 

関連文献

[1] “The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy”

L. Gross et al. Science 2009, 325, 5944. DOI: 10.1126/science.1176210

Resolving individual atoms has always been the ultimate goal of surface microscopy. The scanning tunneling microscope images atomic-scale features on surfaces, but resolving single atoms within an adsorbed molecule remains a great challenge because the tunneling current is primarily sensitive to the local electron density of states close to the Fermi level. We demonstrate imaging of molecules with unprecedented atomic resolution by probing the short-range chemical forces with use of noncontact atomic force microscopy. The key step is functionalizing the microscope’s tip apex with suitable, atomically well-defined terminations, such as CO molecules. Our experimental findings are corroborated by ab initio density functional theory calculations. Comparison with theory shows that Pauli repulsion is the source of the atomic resolution, whereas van der Waals and electrostatic forces only add a diffuse attractive background.

 

関連書籍

[amazonjs asin=”4769311931″ locale=”JP” title=”はじめてのナノプローブ技術 (ビギナーズブックス (18))”][amazonjs asin=”B00IUBVKCS” locale=”JP” title=”Atomic Force Microscopy”][amazonjs asin=”0470638826″ locale=”JP” title=”Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications”]

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 分取薄層クロマトグラフィー PTLC (Preparative …
  2. 原子分光分析法の基礎知識~誘導結合プラズマ発光分析法(ICP-O…
  3. 色素増感型太陽電池 / Dye-sensitized Solar…
  4. 材料適合性 Material compatibility
  5. 熱分析 Thermal analysis
  6. 一重項分裂 singlet fission
  7. 陽電子放射断層撮影 Positron Emmision Tomo…
  8. 水晶振動子マイクロバランス(QCM)とは~表面分析・生化学研究の…

注目情報

ピックアップ記事

  1. 量子コンピューターによるヒュッケル分子軌道計算
  2. 「糖化学ノックイン」領域紹介PVを制作頂きました!
  3. ゼムラー・ウォルフ反応 Semmeler-Wolff Reaction
  4. Dead Endを回避せよ!「全合成・極限からの一手」⑧
  5. 実験と機械学習の融合!ホウ素触媒反応の新展開と新理解
  6. ゴードン会議に参加しました【アメリカで Ph.D. を取る: 国際学会の巻】
  7. マイクロ波化学が挑むプラスチックのリサイクル
  8. サントリー生命科学研究者支援プログラム SunRiSE
  9. チャールズ・クリスギ Charles T. Kresge
  10. 窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー