[スポンサーリンク]

化学一般

日本にノーベル賞が来る理由

[スポンサーリンク]

[amazonjs asin=”4022732520″ locale=”JP” title=”日本にノーベル賞が来る理由 (朝日新書)”]

概要

日本にノーベル賞ラッシュがやって来た! 快挙の背景には国際社会の明確な意思がある。「対称性の破れ」とその「回復」をキーワードに、湯川秀樹以来の16人の受賞者を検証。原爆、核開発からポスト冷戦後まで、パワーポリティクスを鮮やかに読み解き、日本の進むべき道を指し示す。世界の研究と開発を左右する、「最高権威」ノーベル財団の戦略とは。

対象

「ノーベル賞を取り巻く社会情勢・人間模様」に興味のある全ての人。

評価・内容

巷にあふれているノーベル賞関連の書物は、受賞者自身の研究業績、社会へのインパクト、面々と続く科学史における位置づけ・・・などの観点から論ぜられたものがほとんどです。

しかし「日本にノーベル賞が来る理由」は、それらとは一線を画したスタンスをとっています。すなわち、ノーベル賞授与のプロセスに対し、【世界平和という理念の傘の下で、「社会情勢・国際情勢・政治観点」を配慮しつつも、ノーベル賞委員会が大々的に発するメッセージ的企画】という切り口で分析を試みているのです。

たとえば、

● ノーベル賞の基礎理念は世界平和であるがゆえ、原爆製造者はいかに化学に貢献していようが受賞しない
● 平和が崩れないよう、ノーベル賞の受賞者は情勢のバランスをとって決めている。
● 受賞者を推測するには、ノーベル賞委員会の「企画意図」を読むことがカギ。
● 日本にノーベル賞が来る理由―それは日本に期待されている役割、世界が注目する日本の役割を理解し果たすべきだ、というノーベル賞委員会、ひいては世界からのエールである。

・・・などなど。さらにはこういった背景を踏まえたうえで、「日本の科学行政がどうあるべきか」ということに対する斬新なアクションプランをも自ら提示しています。

ピュアな理系研究者視点からは到底想像出来ないような話が満載であり、かなり刺激的な読み物となっています。

詳細の妥当性については各読者の判断にゆだねたいと思いますが、ともあれかなりユニークな立ち位置の書物ではあります。「こういう見方もできるのか!」と筆者自身大変に刺激を受けました。大変に切れのある筆致でもあり、個人的にはこういう書物は大変好みです。

一大イベントであるノーベル賞を、単なる一過性のお祭りで消費してしまわないため、未来への糧と繋げていくためにも、一度は読んでおくに値する書物だと思えます。

関連書籍

[amazonjs asin=”4582856063″ locale=”JP” title=”知っていそうで知らないノーベル賞の話 (平凡社新書)”][amazonjs asin=”4797342005″ locale=”JP” title=”現代科学の大発明・大発見50 なぜその発明・発見はノーベル賞につながったのか? (サイエンス・アイ新書)”]

関連リンク

日本にノーベル賞が来た理由 本書のもととなった日系ビジネスでの連載コラムの一節。本書に興味を持った方は、是非試しに読んでみてください。記事一覧はこちらにまとまっています。

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. セールスコピー大全: 見て、読んで、買ってもらえるコトバの作り方…
  2. 免疫(第6版): からだを護る不思議なしくみ
  3. 生物活性物質の化学―有機合成の考え方を学ぶ
  4. はじめての研究生活マニュアル
  5. 植物たちの静かな戦い
  6. 藤沢晃治 「分かりやすい○○」の技術 シリーズ
  7. 2009年7月人気化学書籍ランキング
  8. Lead Optimization for Medicinal …

注目情報

ピックアップ記事

  1. キムワイプをつくった会社 ~キンバリー・クラーク社について~
  2. 熱を効率的に光に変換するデバイスを研究者が開発、太陽光発電の効率上昇に役立つ可能性
  3. 酸で活性化された超原子価ヨウ素
  4. 日本化学会がプロモーションムービーをつくった:ATP交流会で初公開
  5. ゴールドエクスペリエンスが最長のラダーフェニレンを産み出す
  6. 南 安規 Yasunori Minami
  7. 「温故知新」で医薬品開発
  8. ユニークな名前を持つ配位子
  9. 高分子界の準結晶
  10. モッシャー法 Mosher Method

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー