[スポンサーリンク]

一般的な話題

次世代の二次元物質 遷移金属ダイカルコゲナイド

[スポンサーリンク]

ムーアの法則の限界と二次元半導体

現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、高機能化に向けた微細化・集積化が進んでいる。中でも、半導体の表面に微細な電子回路を形成した集積回路では、回路上に搭載するトランジスタの数が増えるほど計算能力の向上が見込める。集積回路の微細化は、集積回路当たりのトランジスタの数が毎年2倍になるというムーアの法則[1]に従って発展してきた。しかし、三次元半導体のSiを使用したトランジスタを今以上に小さくすることは限界を迎えつつある。その原因は、Siを微細化しすぎることで界面が不安定になり、物性が消失するためである。その問題の突破口となる新たな材料の候補として、二次元材料が挙げられる。

代表的な二次元材料にグラフェンがあげられる。これは、炭素原子のみで構成された二次元物質である。グラフェンはπ軌道とπ*軌道が互いに重なっておらず、価電子帯の上端と伝導帯の下端が6つの点(Dirac point)でのみ接触したDirac cone構造という特殊なバンド構造を持つ(図1)。このため、グラフェンはゼロギャップ半導体とも呼ばれ、種々の興味深い性質を示すが、一方でグラフェンはそのままでは二次元半導体として用いることはできず、ドーピングやイオン注入などで欠陥を作製する必要がある。また、作成時のコストが非常に大きいという問題がある。

 

図1 グラフェンのフェルミ面[2]

次世代の二次元物質 遷移金属ダイカルコゲナイド

グラフェンに替わる二次元物質として、遷移金属ダイカルコゲナイド(Transition Metal Dichalcogenide, TMDC)に注目が集まっている。この物質は一層の遷移金属層をカルコゲン原子層がサンドイッチした構造をとっている。TMDCの一種であるMoSe2の単層構造を図2に示す。

図2 単層MoSe2の結晶構造

 

TMDCの物性は様々で、組成や結晶構造によって金属、半金属、半導体、絶縁体など多岐にわたる。TMDCの特徴的な点として層数によって物性が変化する層数依存性がある。TMDCの一種であるMoS2やMoSe2では、単層になると電子遷移が間接遷移から直接遷移に変化する(図3)。

図3 MoS2のバンドギャップの遷移[3]

量子ビットへの応用

TMDCを構成する遷移金属は強いスピン軌道相互作用を持っている。また、図2のようなハニカム構造を持つTMDCでは、バンド端で2つのエネルギーバンドが縮退している。このバンドは谷(Valley) 型の構造をとるため、この構造をバレーと呼び、この縮退をバレー縮退と呼ぶ。それぞれのバレーには異なる運動量を持った電子が入り、強いスピン軌道相互作用の影響により左右の円偏光で選択的に励起することができる(図4)。このことから、バレーは新たな量子自由度として用いることができる。この自由度はバレー自由度と呼ばれ、バレー自由度を用いて情報処理を行うエレクトロニクスをバレートロニクスと呼ぶ。現代の量子ビットは極低温下での利用が一般的であり、巨大な冷却装置を必要とする点が問題であったが、TMDCのバレー自由度を利用することで、室温かつ小型な量子コンピュータの開発が見込まれる。

図4 MoS2のバレー構造[4]

 

参考文献

[1] MIT Csail Alliances.  https://cap.csail.mit.edu/death-moores-law-what-it-means-and-what-might-fill-gap-going-forward

[2] Tsuneya A., The electronic properties of graphene and carbon nanotubes. NPG Asia Mater., 2009, 1(1), 17-21. DOI: 10.1038/10.1038/asiamat.2009.1

[3] Splendiani. A; Liang S.; Yuanbo Z.; Tianshu L.; Jonghwan K.; Chi-Yung C.; Giulia G.; Feng W. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10(4), 1271-1275, DOI: 10.1021/nl903868w

[4] Di X.; Gui-Bin L.; Wanxiang F.; Xiaodong X.; Wang Y. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides, PRL, 2012, 108(19), 196802, DOI: 10.1103/PhysRevLett.108.196802  

植木 穂香

投稿者の記事一覧

奈良先端大のD1です。ポラリトンについて研究しています。

関連記事

  1. SciFinder Future Leaders in Chem…
  2. Carl Boschの人生 その9
  3. 金属原子のみでできたサンドイッチ
  4. 科学とは「世界中で共有できるワクワクの源」! 2018年度ロレア…
  5. 世界で初めて一重項分裂光反応の静水圧制御を達成
  6. 東京化成工業がケムステVシンポに協賛しました
  7. 10手で陥落!(+)-pepluanol Aの全合成
  8. 172番元素までの周期表が提案される

注目情報

ピックアップ記事

  1. 不斉配位子
  2. #おうち時間を充実させるオンライン講義紹介 ーナノテクー
  3. C-CN結合活性化を介したオレフィンへの触媒的不斉付加
  4. 第71回「分子制御で楽しく固体化学を開拓する」林正太郎教授
  5. マイクロ波化学の事業化プラットフォーム 〜実証設備やサービス事例〜
  6. パラジウム錯体の酸化還元反応を利用した分子モーター
  7. タウリン捕まえた!カゴの中の鳥にパイ電子雲がタッチ
  8. 化学系学生のための就活2019
  9. アメリカで Ph.D. を取る -Visiting Weekend 参加報告 (前編)-
  10. 森田浩介 Kosuke Morita

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年4月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー