[スポンサーリンク]

化学者のつぶやき

医薬品設計における三次元性指標(Fsp³)の再評価

[スポンサーリンク]

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「Escape from Flatland(平面世界からの脱却)」1では、分子内のsp³炭素の割合(Fsp³値)が高い、すなわち三次元的な構造を持つ医薬候補分子が臨床開発で成功しやすいと報告されました(過去記事:「創薬に求められる構造~sp³炭素の重要性~」参照)。しかし、近年の研究では、この仮説が必ずしも現在の創薬プロセスに適用できるとは限らない可能性が指摘されています。

“Return to Flatland”
Ian Churcher, Stuart Newbold, Christopher W. Murray Nat. Chem. Rev. 2025, doi:10.1038/s41570-025-00688-5

“平面世界への回帰”

Loveringらによる2009年の論文中1では、医薬品分子の三次元的特性を定量化するためにFsp³という指標が用いられました。Fsp³が高い分子は平面性が低く、溶解性や選択的標的結合性が向上し、オフターゲット相互作用が減少する可能性があると考えられていました。この研究では、Fsp³と臨床試験成功率の間に統計的に有意な関係(P < 0.001)があると示され、以降、Fsp³は創薬における重要な指標の一つとして広く認識されてきました。

一方、2025年の本論説 “Return to Flatland” では、この仮説—「三次元的な構造を持つ医薬品(高Fsp³値の分子)は臨床開発において成功しやすい」—が現在でも成り立つのかを再評価しています。著者らは、2009年以降に承認された医薬品および現在開発中の医薬品についてFsp³値を解析しました。その結果、近年の承認薬ではFsp³値が低下している(0.458 → 0.392)ことが明らかになりました。また、臨床開発中の医薬品においても、Fsp³の高さが成功率と明確な相関を示していませんでした。

低Fsp³承認薬の増加要因

この変化には、標的とする分子の変化や合成技術の進展など、複数の要因が関与していると考えられます。

  1. 標的の変化
    近年、キナーゼ阻害剤の開発が進み、これらは比較的平面性の高い分子(低Fsp³)であることが多いため、承認薬のFsp³値が低下している可能性があります。
  2. 合成技術の進歩
    金属触媒を用いたクロスカップリング反応が一般的になり、sp²結合を持つ分子の合成が容易になったことが影響していると考えられます。
  3. スクリーニング効率の問題
    Fsp³が高い分子は標的選択性を高める可能性がありますが、スクリーニング時のヒット率が低下することが指摘されています。例えば、三次元性を強化したフラグメントセットを用いたBRD4-BD1のスクリーニングでは、従来のフラグメントセットと比較してヒット率が約2.5倍低下したと報告されています。

これらの知見から、本論説では「Fsp³値の高さだけに依存した分子設計は、必ずしも医薬品開発の成功に直結しない」と結論づけています。三次元性という単一の指標を過度に追求するのではなく、標的の特性や薬理活性、物性、合成可能性など、多角的な視点を踏まえた分子設計の重要性が提言されています。

本論説は比較的短文のNews & Viewsとしてまとめられており、すぐ読める内容です。創薬化学に関わる方にとって、一読することで新たな視点を得る良い契機となるでしょう。

参考文献

  1. Lovering, F.; Bikker, J.; Humblet, C. “Escape from flatland: increasing saturation as an approach to improving clinical success.” J. Med. Chem. 2009, 52, 6752–6756. DOI: 10.1021/jm901241e

関連書籍

創薬化学: メディシナルケミストへの道

創薬化学: メディシナルケミストへの道

¥4,290(as of 04/16 13:12)
Amazon product information

関連記事

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ルィセンコ騒動のはなし(後編)
  2. アメリカ企業研究員の生活①:1日の仕事の流れ
  3. B≡B Triple Bond
  4. 留学せずに英語をマスターできるかやってみた(5年目)(留学中編)…
  5. 溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不…
  6. (–)-Batrachotoxinin Aの短工程全合成
  7. スケールアップのためのインフォマティクス活用 -ラボスケールから…
  8. 多様なペプチド化合物群を簡便につくるー創薬研究の新技術ー

注目情報

ピックアップ記事

  1. マイケル付加 Michael Addition
  2. 水晶振動子マイクロバランス(QCM)とは~表面分析・生化学研究の強力ツール~
  3. 高橋 大介 Daisuke Takahashi
  4. 在宅となった化学者がすべきこと
  5. トシルヒドラゾンを経由するカルボニル化合物の脱酸素ヒドロフッ素化反応によるフルオロアルカンの合成
  6. フッ素をホウ素に変換する触媒 :簡便なPETプローブ合成への応用
  7. 人工光合成の方法で有機合成反応を実現
  8. アノマー効果を説明できますか?
  9. キラルシリカを“微小らせん石英セル”として利用した円偏光発光制御技術の開発
  10. 2011年人気記事ランキング

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年2月
 12
3456789
10111213141516
17181920212223
2425262728  

注目情報

最新記事

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー