[スポンサーリンク]

化学者のつぶやき

配座制御が鍵!(–)-Rauvomine Bの全合成

[スポンサーリンク]

シクロプロパン環をもつインドールアルカロイド(–)-rauvomine Bの初の全合成が達成された。Nスルホニルトリアゾールの開環型分子内シクロプロパン化反応が本合成の鍵である。

(–)-Rauvomine 類とその骨格構築

Rauvomine類はキョウチクトウ科の樹木Rauvolfia vomitoriaから近年単離されたモノテルペンインドールアルカロイドであり、伝統的に薬の材料として用いられてきた[1](図1A)。特にrauvomine B(1)は、264.7マクロファージ細胞を極端に抑制する作用が確認されており、抗炎症作用が期待される。また、1は架橋したシクロプロパン環を含む6-5-6-6-3-5縮環構造が特徴的である。C19位にメチル基をもつ天然物の合成は、これまでCookらにより報告されている[2]。一方で、LeiらはCookらの合成を参考に1の全合成を試みたが、シクロプロパン骨格の形成には成功しておらず、現時点で1の全合成報告はない[3]
今回、SmithおよびChenらは1の全合成を目指す過程で、N-スルホニルトリアゾールの開環型分子内シクロプロパン化反応に着目した[4](図1B)。具体的には、N-トシルトリアゾール 2にロジウム触媒を作用させることでロジウムカルベン3を生成し、その後、オレフィンとの分子内シクロプロパン化が進行すると予想した。この仮説に基づき、著者らは以下の逆合成解析を提案した(図1C)。トリアゾール45の閉環メタセシス、続くエステルのアルキンへの変換とトシルアジドとの付加環化で合成できるとした。5は、L-トリプトファンから導かれた二級アミン6cis選択的なPictet–Spengler反応によって得られると考えた。

図1. (A) アルカロイドの構造 (B) 鍵となる分子内シクロプロパン化 (C) (–)-Rauvomine Bの合成戦略

 

“Total Synthesis of ()-Rauvomine B via a Strain-Promoted Intramolecular Cyclopropanation”
Aquilina, J. M.; Banerjee, A.; Morais, G. N.; Chen, S.; Smith, M. W. J. Am. Chem. Soc. 2024, 146, 22047–22055. DOI: 10.1021/jacs.4c07669

論文著者の紹介

研究者:Myles W. Smith (研究室HP)研究者の経歴:
2015                         Ph.D., Columbia University, USA (Prof. Scott A. Snyder)
2015–2019            Postdoc, The Scripps Research Institute, USA (Prof. Phil S. Baran)
Postdoc, Stanford University, USA (Prof. Noah Z. Burns)
2019–                     Assistant Professor, University of Texas Southwestern Medical Center, USA
研究内容:薬理活性のある複雑分子の合成、不斉触媒系の開発
研究者:Shuming Chen (研究室HP)

 

研究者の経歴:2016                         Ph.D., Yale University, USA (Prof. Jonathan A. Ellman)
2016–2019            Postdoc, University of California, Los Angeles, USA (Prof. Hosea M. Nelson)
2019–2020            Assistant Professor, University of California, Los Angeles, USA (Prof. Kendall N. Houk)
2020–                     Assistant Professor, Oberlin College, USA
研究内容:遷移金属触媒反応における選択性の解明、新しい選択性を生じる試薬の開発

 

論文の概要

1の合成を図2Aに示す。L-トリプトファンメチルエステル(7)と 3工程で合成したキラルなアリルアセテート8とのPd(dppe)2存在下で辻–トロスト反応を行い、二級アミン9を合成した[5]。次に、9とアルデヒド10を用い、Cookらが報告したPictet–Spengler反応を行ったところ、ジアステレオ選択性は低いもののcis体優先的に進行し、11が得られた[6]11を酸化し、続くb水素脱離によりジエン12が得られ、これを閉環メタセシスにより13とした。13のエステルの還元とSeyferth–Gilbert反応によりアルキン14へと変換し、銅触媒を用いた付加環化によりトリアゾール16を合成した。この段階で、分子内シクロプロパン化を試みたが、1,2-ヒドリド移動による18の生成、あるいは原料の分解が確認された。そこで、インドールの窒素原子を保護することで、立体配座の制御や分解の抑制が可能であると考え、Boc保護したトリアゾール17を用いた。その結果、目的のシクロプロパン化が進行し、さらに加水分解と脱保護を経て1の全合成を達成した。また、17が精製過程で脱トシル化しやすいという知見を得たため、付加環化とシクロプロパン化をワンポットにすることで工程短縮と収率向上にも成功した。
その後、著者らはシクロプロパン化の反応機構を合理的に説明しようと試みた(図2B)。開環後に生じるロジウムカルベンにはcis体(cis-3)とtrans体(trans-3)の配座異性体が存在し、シクロプロパン化はcis-3、ヒドリド移動はtrans-3を経て進行したと考えた[7]。DFT計算により、cis-3trans-3は、安定な中間体であるアジリジニウムイリド20を経由することが示され、無保護の状態ではヒドリド移動が優先することが確認された。一方で、Boc保護体では立体障害のため20が不安定化し、cis-3およびその遷移状態(TS-1)が安定化するため、シクロプロパン化が理論的に裏付けられた。

図2. (A) (–)-Rauvomine B (1)の合成 (B) 分子内シクロプロパン化反応と1,2-ヒドリドシフトのエネルギーダイアグラム

以上、著者らは立体配座を制御することで、シクロプロパン化に成功し、結果、11工程での初のrauvomine Bの全合成に至った。Boc基を利用して合成後期にシクロプロパン部位を構築する鮮やかな手腕には、魅せられた!

 

参考文献

  1. Zeng, J.; Zhang, D.-B.; Zhou, P.-P.; Zhang, Q.-L.; Zhao, L.; Chen, J.-J.; Gao, K. Rauvomines A and B, Two Monoterpenoid Indole Alkaloids from Rauvolfia Vomitoria Org. Lett.201719, 3998–4001. DOI: 10.1021/acs.orglett.7b01723
  2. Edwankar, R. V.; Edwankar, C. R.; Deschamps, J. R.; Cook, J. M. General Strategy for Synthesis of C-19 Methyl-Substituted SarpagineMacroline / Ajmaline Indole Alkaloids Including Total Synthesis of 19(S),20(R)-Dihydroperaksine, 19(S),20(R)-Dihydroperaksine-17-al, and Peraksine.  J. Org. Chem. 201479, 10030–10048. DOI: 10.1021/jo5016163
  3. Wu, B.; Jiang, Z.-J.; Tang, J.; Gao, Z.; Liang, H.; Tang, B.; Chen, J.; Lei, K. Total Synthesis Study of Rauvomines A and B: Construction of the Pentacyclic Core Structure.  Org, Chem. Front.20207, 1685–1689. DOI: 10.1039/C9QO01531K
  4. (a) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. Rhodium-Catalyzed Transannulation of 1,2,3-Triazoles with Nitriles.  J. Am. Chem. Soc.2008130, 14972–14974. DOI: 10.1021/ja805079v (b) Chuprakov, S.; Kwok, S. W.; Zhang, L.; Lercher, L.; Fokin, V. V. Rhodium-Catalyzed Enantioselective Cyclopropanation of Olefins with N-Sulfonyl 1,2,3-Triazoles. J. Am. Chem. Soc. 2009131, 18034–18035. DOI: 10.1021/ja908075u
  5. Trost, B. M.; Calkins, T. L.; Oertelt, C.; Zambrano, J. Catalyst Controlled Diastereoselective N-Alkylations of α-Amino Esters. Tetrahedron Lett. 199839, 1713–1716. DOI: 1016/S0040-4039(98)00139-7
  6. Rahman, M. T.; Cook, J. M. Unprecedented Stereocontrol in the Synthesis of 1,2,3‐Trisubstituted Tetrahydro‐β‐carbolines through an Asymmetric Pictet–Spengler Reaction towards Sarpagine‐Type Indole Alkaloids.  J. Org. Chem.20182018, 3224–3229. DOI: 10.1002/ejoc.201800600
  7. (a) Uskokovic, M.; Bruderer, H.; von Planta, C.; Williams, T.; Brossi, A. The Nuclear Magnetic Resonance Spectra of the Angular Proton in Benzo[a]- and Indolo[a]quinolizidines. J. Am. Chem. Soc. 1964, 86, 3364−3367. DOI: 10.1021/ja01070a031 (b) Eckermann, R.; Gaich, T. The Double-Bond Configuration of Corynanthean Alkaloids and Its Impact on Monoterpenoid Indole Alkaloid Biosynthesis.
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 未踏の構造に魅せられて―ゲルセモキソニンの全合成
  2. 受賞者は1000人以上!”21世紀のノーベル賞…
  3. 期待度⭘!サンドイッチ化合物の新顔「シクロセン」
  4. ラジカルを活用した新しいケージド化法: アセチルコリン濃度の時空…
  5. 合成手法に焦点を当てて全合成研究を見る「テトロドトキシン~その1…
  6. リンダウ会議に行ってきた①
  7. 5/15(水)Zoom開催 【旭化成 人事担当者が語る!】202…
  8. 室温で二酸化炭素をメタノールへ変換できる触媒の創製

注目情報

ピックアップ記事

  1. ウォルター・コーン Walter Kohn
  2. オペレーションはイノベーションの夢を見るか? その3+まとめ
  3. 新規重水素化触媒反応を開発―医薬品への直接重水素導入を達成―
  4. 芳香族ボロン酸でCatellani反応
  5. 渡邉 峻一郎 Shun Watanabe
  6. 2021年ノーベル化学賞ケムステ予想当選者発表!
  7. “見た目はそっくり、中身は違う”C-グリコシド型擬糖鎖/複合糖質を開発
  8. 化学企業のグローバル・トップ50が発表【2023年版】
  9. 畠山琢次 Takuji Hatakeyama
  10. エステルをアルデヒドに変換する新手法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー