シクロプロパン環をもつインドールアルカロイド(–)-rauvomine Bの初の全合成が達成された。N–スルホニルトリアゾールの開環型分子内シクロプロパン化反応が本合成の鍵である。
(–)-Rauvomine 類とその骨格構築
Rauvomine類はキョウチクトウ科の樹木Rauvolfia vomitoriaから近年単離されたモノテルペンインドールアルカロイドであり、伝統的に薬の材料として用いられてきた[1](図1A)。特にrauvomine B(1)は、264.7マクロファージ細胞を極端に抑制する作用が確認されており、抗炎症作用が期待される。また、1は架橋したシクロプロパン環を含む6-5-6-6-3-5縮環構造が特徴的である。C19位にメチル基をもつ天然物の合成は、これまでCookらにより報告されている[2]。一方で、LeiらはCookらの合成を参考に1の全合成を試みたが、シクロプロパン骨格の形成には成功しておらず、現時点で1の全合成報告はない[3]。
今回、SmithおよびChenらは1の全合成を目指す過程で、N-スルホニルトリアゾールの開環型分子内シクロプロパン化反応に着目した[4](図1B)。具体的には、N-トシルトリアゾール 2にロジウム触媒を作用させることでロジウムカルベン3を生成し、その後、オレフィンとの分子内シクロプロパン化が進行すると予想した。この仮説に基づき、著者らは以下の逆合成解析を提案した(図1C)。トリアゾール4は5の閉環メタセシス、続くエステルのアルキンへの変換とトシルアジドとの付加環化で合成できるとした。5は、L-トリプトファンから導かれた二級アミン6のcis選択的なPictet–Spengler反応によって得られると考えた。
“Total Synthesis of (−)-Rauvomine B via a Strain-Promoted Intramolecular Cyclopropanation”
Aquilina, J. M.; Banerjee, A.; Morais, G. N.; Chen, S.; Smith, M. W. J. Am. Chem. Soc. 2024, 146, 22047–22055. DOI: 10.1021/jacs.4c07669
論文著者の紹介
研究者:Myles W. Smith (研究室HP)研究者の経歴:
2015 Ph.D., Columbia University, USA (Prof. Scott A. Snyder)
2015–2019 Postdoc, The Scripps Research Institute, USA (Prof. Phil S. Baran)
Postdoc, Stanford University, USA (Prof. Noah Z. Burns)
2019– Assistant Professor, University of Texas Southwestern Medical Center, USA
研究内容:薬理活性のある複雑分子の合成、不斉触媒系の開発
研究者:Shuming Chen (研究室HP)
研究者の経歴:2016 Ph.D., Yale University, USA (Prof. Jonathan A. Ellman)
2016–2019 Postdoc, University of California, Los Angeles, USA (Prof. Hosea M. Nelson)
2019–2020 Assistant Professor, University of California, Los Angeles, USA (Prof. Kendall N. Houk)
2020– Assistant Professor, Oberlin College, USA
研究内容:遷移金属触媒反応における選択性の解明、新しい選択性を生じる試薬の開発
論文の概要
1の合成を図2Aに示す。L-トリプトファンメチルエステル(7)と 3工程で合成したキラルなアリルアセテート8とのPd(dppe)2存在下で辻–トロスト反応を行い、二級アミン9を合成した[5]。次に、9とアルデヒド10を用い、Cookらが報告したPictet–Spengler反応を行ったところ、ジアステレオ選択性は低いもののcis体優先的に進行し、11が得られた[6]。11を酸化し、続くb水素脱離によりジエン12が得られ、これを閉環メタセシスにより13とした。13のエステルの還元とSeyferth–Gilbert反応によりアルキン14へと変換し、銅触媒を用いた付加環化によりトリアゾール16を合成した。この段階で、分子内シクロプロパン化を試みたが、1,2-ヒドリド移動による18の生成、あるいは原料の分解が確認された。そこで、インドールの窒素原子を保護することで、立体配座の制御や分解の抑制が可能であると考え、Boc保護したトリアゾール17を用いた。その結果、目的のシクロプロパン化が進行し、さらに加水分解と脱保護を経て1の全合成を達成した。また、17が精製過程で脱トシル化しやすいという知見を得たため、付加環化とシクロプロパン化をワンポットにすることで工程短縮と収率向上にも成功した。
その後、著者らはシクロプロパン化の反応機構を合理的に説明しようと試みた(図2B)。開環後に生じるロジウムカルベンにはcis体(cis-3)とtrans体(trans-3)の配座異性体が存在し、シクロプロパン化はcis-3、ヒドリド移動はtrans-3を経て進行したと考えた[7]。DFT計算により、cis-3、trans-3は、安定な中間体であるアジリジニウムイリド20を経由することが示され、無保護の状態ではヒドリド移動が優先することが確認された。一方で、Boc保護体では立体障害のため20が不安定化し、cis-3およびその遷移状態(TS-1)が安定化するため、シクロプロパン化が理論的に裏付けられた。
以上、著者らは立体配座を制御することで、シクロプロパン化に成功し、結果、11工程での初のrauvomine Bの全合成に至った。Boc基を利用して合成後期にシクロプロパン部位を構築する鮮やかな手腕には、魅せられた!
参考文献
- Zeng, J.; Zhang, D.-B.; Zhou, P.-P.; Zhang, Q.-L.; Zhao, L.; Chen, J.-J.; Gao, K. Rauvomines A and B, Two Monoterpenoid Indole Alkaloids from Rauvolfia Vomitoria. Org. Lett.2017, 19, 3998–4001. DOI: 10.1021/acs.orglett.7b01723
- Edwankar, R. V.; Edwankar, C. R.; Deschamps, J. R.; Cook, J. M. General Strategy for Synthesis of C-19 Methyl-Substituted Sarpagine/ Macroline / Ajmaline Indole Alkaloids Including Total Synthesis of 19(S),20(R)-Dihydroperaksine, 19(S),20(R)-Dihydroperaksine-17-al, and Peraksine. J. Org. Chem. 2014, 79, 10030–10048. DOI: 10.1021/jo5016163
- Wu, B.; Jiang, Z.-J.; Tang, J.; Gao, Z.; Liang, H.; Tang, B.; Chen, J.; Lei, K. Total Synthesis Study of Rauvomines A and B: Construction of the Pentacyclic Core Structure. Org, Chem. Front.2020, 7, 1685–1689. DOI: 10.1039/C9QO01531K
- (a) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. Rhodium-Catalyzed Transannulation of 1,2,3-Triazoles with Nitriles. J. Am. Chem. Soc.2008, 130, 14972–14974. DOI: 10.1021/ja805079v (b) Chuprakov, S.; Kwok, S. W.; Zhang, L.; Lercher, L.; Fokin, V. V. Rhodium-Catalyzed Enantioselective Cyclopropanation of Olefins with N-Sulfonyl 1,2,3-Triazoles. J. Am. Chem. Soc. 2009, 131, 18034–18035. DOI: 10.1021/ja908075u
- Trost, B. M.; Calkins, T. L.; Oertelt, C.; Zambrano, J. Catalyst Controlled Diastereoselective N-Alkylations of α-Amino Esters. Tetrahedron Lett. 1998, 39, 1713–1716. DOI: 1016/S0040-4039(98)00139-7
- Rahman, M. T.; Cook, J. M. Unprecedented Stereocontrol in the Synthesis of 1,2,3‐Trisubstituted Tetrahydro‐β‐carbolines through an Asymmetric Pictet–Spengler Reaction towards Sarpagine‐Type Indole Alkaloids. J. Org. Chem.2018, 2018, 3224–3229. DOI: 10.1002/ejoc.201800600
- (a) Uskokovic, M.; Bruderer, H.; von Planta, C.; Williams, T.; Brossi, A. The Nuclear Magnetic Resonance Spectra of the Angular Proton in Benzo[a]- and Indolo[a]quinolizidines. J. Am. Chem. Soc. 1964, 86, 3364−3367. DOI: 10.1021/ja01070a031 (b) Eckermann, R.; Gaich, T. The Double-Bond Configuration of Corynanthean Alkaloids and Its Impact on Monoterpenoid Indole Alkaloid Biosynthesis.