[スポンサーリンク]

化学者のつぶやき

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

[スポンサーリンク]

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思います.今回は,生化学の知見を有機化学へと応用した,遺伝子の転写調節因子の一つであるLmrRの疎水性ポケットを利用した有機触媒反応例について紹介したいと思います.

転写調節因子LmrR

生物のもつゲノムDNAには多くの遺伝子 (何かしらの情報をもつ領域) がありますが,それらは常に発現されているわけではなく,転写調節因子などによって厳密に制御されています.そのなかでも乳酸菌Lactococcus lactisより見出された転写調節因子LmrRは薬剤耐性菌の研究対象として注目されてきました1
L. lactisは様々な毒性化合物にさらされると多剤耐性を示します.このメカニズムにLmrRが関わってきます.LmrRは本来,薬剤を生体外部へ排出するトランスポーターのプロモーター領域に結合しています2.ここで薬剤が生体内に入ってくると薬剤はLmrRと結合し,LmrRがプロモーター領域から外れることでトランスポーターの発現スイッチがオンとなり,薬剤が生体外部へ放出されます (図1)3

図1 : LmrRによる薬剤耐性機構 (参考文献3より引用)

ここで重要となってくるのが,この薬剤と結合するLmrRが多剤認識であるということです.この多剤認識機構はLmrRのタンパク質立体構造から説明できます.LmrRはホモ二量体を形成し,その境界面に大きな疎水性のポケットを持ちます.この疎水性ポケットに薬剤など様々な化合物が内包されます (図2)4

図2 : (A) LmrRに認識される化合物の例, (B-D) 化合物とLmrRの共結晶構造解析結果 (参考文献4より引用)

LmrRの疎水性ポケットを利用した有機反応1 : 配位子の結合

上記に述べた情報から,LmrRの疎水性ポケットに金属触媒を配位できるように設計し,多剤認識であるLmrRが様々な基質を受け入れることで有機反応を行わせることができるのではないか,とフローニンゲン大学のGerard Roelfes教授らは考えました5.彼らは,LmrRの疎水性ポケット中のアミノ酸をリシンに置換し,そのリシン残基特異的にリンカーを付加するように修飾を行い,リンカーの先に銅を配位させることでルイス酸性銅 (II) 錯体を作製しました (図3) .この人工酵素を用いることで,Diels-Alder反応を引き起こすことに成功し,ee 97%の高いエナンチオ選択的的な反応の進行に成功しました.

図3 : LmrRへのルイス銅 (II) 錯体の導入 (参考文献6より引用)

LmrRの疎水性ポケットを利用した有機反応2 : ポルフィリン環 (ヘム) の結合

図2で示すように,疎水性ポケットの中央部には96番目のトリプトファンが向かい合っており,これがπ-πスタッキングを起こしていることが分かります.これを利用して,様々な反応を引き起こすことが可能なヘムを結合させることに成功しました (図4) .このヘムを結合させたLmrRにおいて,ヘム鉄により反応が進行することが分かっているカルベン転移反応を成功させました7

図4 : LmrRへのヘムの導入とカルベン転移反応 (参考文献6より引用)

LmrRの疎水性ポケットを利用した有機反応3 : 非天然アミノ酸の導入と指向性進化

上記の研究などから,触媒をLmrRに組み込むことで,高いエナンチオ選択的触媒反応を引き起こすことが可能であることが分かりました.この理由として,タンパク質はその活性ポケットを構成するアミノ酸残基により受け入れる基質の配向や,触媒・活性中間体の安定化を担っていることが挙げられます.そこでこのLmrRに,非天然アミノ酸を組み込むことで,非天然アミノ酸が活性化する有機反応を触媒することが可能となるのではないかと考えました.具体的に,2024年5月に報告された,LmrRにボロン酸を含む非天然アミノ酸を組み込んだ研究例についてご紹介します.
ボロン酸はその毒性の低さや,ボロン酸のルイス酸性,ヒドロキシ基との交換反応により様々な反応を引き起こすことが可能です (図5)8

図5 : ボロン酸触媒による様々な反応 (参考文献8より引用)

しかし,ボロン酸触媒には一つ課題があり,それはボロン酸のみでエナンチオ選択的触媒反応を起こすのが難しい,という点です.これは,ボロン酸の安定化のためにボロン酸の隣にはアリール置換基などが必要であり,そのため不斉触媒として不斉点を入れるのが難しい,という点になります.これを唯一回避した研究例は一例のみであり,アザマイケル付加反応を,ビアリール触媒の軸不斉を用いることで成功しています (図6)9

図6 : ボロン酸のみに依存したエナンチオ選択的触媒反応 (参考文献8, 9より引用)

そこでLmrRにボロン酸を含む非天然アミノ酸としてp-boronophenylalanine (pBoF) を組み込み,さらに疎水性ポケットを構成するアミノ酸残基を指向性進化させることで活性を向上させ,α-ヒドロキシケトンとヒドロキシアミンの縮合反応によるエナンチオ選択的なオキシムの生産に成功しました (図7)10 .この研究では,非天然アミノ酸を組み込むために,LmrRに終止コドンを導入し,その終止コドンを認識するtRNA,このtRNAとpBoFを結合させるためのアミノアシルtRNA合成酵素を大腸菌へ形質転換することで人工酵素を精製しています.非天然アミノ酸を組み込む系の一番のメリットとして,一度この人工酵素を作る大腸菌を用意してしまえば,いつでも導入した非天然アミノ酸が触媒するタンパク質を精製することが可能,という点です.

図7 : 非天然アミノ酸を組み込んだ人工酵素によるエナンチオ選択的触媒反応 (参考文献11より引用)

最後に

本記事では,遺伝子の転写調節因子に着目し,その疎水性ポケットを利用した有機反応について紹介しました.このように横断的な研究というのは一つの分野に捉われずに,様々な分野の研究を知っていくことで生まれる発想だと思われます.そのため,自身の研究分野だけでなく,様々な分野の勉強をしていこうという自分自身への戒めにもなりました.
また人工酵素という部分については近年の酵素工学の分野では大きく発展している部分になります.今後も人工酵素については追っていきたいと思います.

参考文献

(1)   Agustiandari, H.; Lubelski, J.; van den Berg van Saparoea, H. B.; Kuipers, O. P.; Driessen, A. J. M. LmrR Is a Transcriptional Repressor of Expression of the Multidrug ABC Transporter LmrCD in Lactococcus Lactis. J. Bacteriol. 2008, 190 (2), 759–763. https://doi.org/10.1128/JB.01151-07.

(2)   Agustiandari, H.; Peeters, E.; de Wit, J. G.; Charlier, D.; Driessen, A. J. M. LmrR-Mediated Gene Regulation of Multidrug Resistance in Lactococcus Lactis. Microbiology 2011, 157 (Pt 5), 1519–1530. https://doi.org/10.1099/mic.0.048025-0.

(3)   Takeuchi, K.; Tokunaga, Y.; Imai, M.; Takahashi, H.; Shimada, I. Dynamic Multidrug Recognition by Multidrug Transcriptional Repressor LmrR. Sci. Rep. 2014, 4 (1), 6922. https://doi.org/10.1038/srep06922.

(4)   Madoori, P. K.; Agustiandari, H.; Driessen, A. J. M.; Thunnissen, A.-M. W. H. Structure of the Transcriptional Regulator LmrR and Its Mechanism of Multidrug Recognition. EMBO J. 2009, 28 (2), 156–166. https://doi.org/10.1038/emboj.2008.263.

(5)   Bos, J.; Fusetti, F.; Driessen, A. J. M.; Roelfes, G. Enantioselective Artificial Metalloenzymes by Creation of a Novel Active Site at the Protein Dimer Interface. Angew. Chem. Int. Ed Engl. 2012, 51 (30), 7472–7475. https://doi.org/10.1002/anie.201202070.

(6)   Roelfes, G. LmrR: A Privileged Scaffold for Artificial Metalloenzymes. Acc. Chem. Res. 2019, 52 (3), 545–556. https://doi.org/10.1021/acs.accounts.9b00004.

(7)   Villarino, L.; Splan, K. E.; Reddem, E.; Alonso-Cotchico, L.; Gutiérrez de Souza, C.; Lledós, A.; Maréchal, J.-D.; Thunnissen, A.-M. W. H.; Roelfes, G. An Artificial Heme Enzyme for Cyclopropanation Reactions. Angew. Chem. Int. Ed Engl. 2018, 57 (26), 7785–7789. https://doi.org/10.1002/anie.201802946.

(8)   Hall, D. G. Boronic Acid Catalysis. Chem. Soc. Rev. 2019, 48 (13), 3475–3496. https://doi.org/10.1039/c9cs00191c.

(9)   Hashimoto, T.; Gálvez, A. O.; Maruoka, K. Boronic Acid-Catalyzed, Highly Enantioselective Aza-Michael Additions of Hydroxamic Acid to Quinone Imine Ketals. J. Am. Chem. Soc. 2015, 137 (51), 16016–16019. https://doi.org/10.1021/jacs.5b11518.

(10) Longwitz, L.; Leveson-Gower, R. B.; Rozeboom, H. J.; Thunnissen, A.-M. W. H.; Roelfes, G. Boron Catalysis in a Designer Enzyme. Nature 2024. https://doi.org/10.1038/s41586-024-07391-3.

(11) Chen, X.-W.; Bo, Z.; Yang, Y. Artificial Boron Enzymes. Nat. Chem. Biol. 2024, 20 (9), 1106–1107. https://doi.org/10.1038/s41589-024-01707-0.

熊葛

投稿者の記事一覧

天然有機化合物の生合成研究を行っております。遺伝子工学から酵素工学、有機化学など、広い分野に興味を持っております。

関連記事

  1. 原子状炭素等価体を利用してα,β-不飽和アミドに一炭素挿入する新…
  2. 第22回ケムステVシンポ「次世代DDSナノキャリア」を開催します…
  3. CYP総合データベース: SuperCYP
  4. トーンカーブをいじって画像加工を見破ろう
  5. パラジウム錯体の酸化還元反応を利用した分子モーター
  6. ここまでできる!?「DNA折り紙」の最先端 ② ~巨大な平面構造…
  7. 励起パラジウム触媒でケトンを還元!ケチルラジカルの新たな発生法と…
  8. 2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予…

注目情報

ピックアップ記事

  1. 東京化成工業がケムステVシンポに協賛しました
  2. 化学産業における規格の意義
  3. アルコールを空気で酸化する!
  4. 第165回―「光電変換へ応用可能な金属錯体の開発」Ed Constable教授
  5. 第30回ケムステVシンポ「世界に羽ばたく日本の化学研究」ーAldrichimica Actaコラボレーションを開催します
  6. アカデミアケミストがパパ育休を取得しました!
  7. 日本プロセス化学会2005サマーシンポジウム
  8. ペプチドの精密な「立体ジッパー」構造の人工合成に成功
  9. TED.comで世界最高の英語プレゼンを学ぶ
  10. 触媒的C-H酸化反応 Catalytic C-H Oxidation

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー