[スポンサーリンク]

化学者のつぶやき

アザボリンはニ度異性化するっ!

[スポンサーリンク]

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は、BN-デュワーベンゼンを経由しながら進行することが示唆された。

ベンズバレンへのヘテロ原子の導入

ベンゼンの構造異性体の一つであるベンズバレンは、二重結合で束縛されたビシクロ[1.1.0]ブタン骨格の大きな環歪みエネルギーと、それに基づく高い反応性から注目されている(図1A)[1]。1977年、小林らのリン含有ベンズバレンの合成報告を皮切りに、第三周期元素のリンおよびケイ素原子を含むベンズバレンが多数報告されてきた[2]。一方、第二周期元素(B, N, O)を含むベンズバレン様化合物は少数報告されているが、ビシクロブタン骨格を束縛する結合の二重結合性については議論されていない[3]。第三周期元素は、出発物質の共鳴安定性の低下と生成物の環歪みの緩和を引き起こすため、ベンズバレン骨格の構築を容易にする。しかし、これらの効果が見込めない、原子半径がより小さな第二周期元素を含むベンズバレン骨格の構築は困難であることが予想される。
一方で、LiuとBettingerらは以前、1,2-アザボリンからヘテロ原子を含むベンゼンの別の構造異性体である1,2-BN-デュワーベンゼンへの光異性化を報告した(図1B)[4]。今回、Liuらはこの光異性化においてC5位にアリール基を有する1,2-アザボリンを用いると、中間体として1,2-BN-デュワーベンゼンを経て、1,2-BN-ベンズバレンへと更なる異性化が進行することを見いだした。これはホウ素および窒素原子を含むヘテロベンズバレンの初の合成例である(図1C)。

図1 (A) (ヘテロ)ベンズバレン (B) BN-デュワーベンゼンへの光異性化 (C) BN-ベンズバレンへの光異性化

]

“A BN-Benzvalene
Ozaki, T.; Bentley, S. K.; Rybansky, N.; Li, B.; Liu, S.-Y. J. Chem. Soc. 2024, 146, 24748–24753. DOI: 10.1021/jacs.4c08088

論文著者の紹介

研究者:Shih-Yuan Liu (劉世元)
研究者の経歴:
1997  B.Sc., Vienna University of Technology, Austria
2003                                                   Ph.D., Massachusetts Institute of Technology, USA (Prof. Gregory C. Fu)
2003–2006               Postdoc, Massachusetts Institute of Technology, USA (Prof. Daniel G. Nocera)
2006–2012               Assistant Professor, University of Oregon, USA
2012–2013               Associate Professor, University of Oregon, USA
2013–                                                Professor, Boston College, USA
研究内容:含ホウ素窒素ヘテロ環の合成およびそれらを用いた反応開発

論文の概要

著者らは、THF中、1,2-アザボリン1aに紫外光を10分間照射することで、1aの異性体である1,2-BN-デュワーベンゼン2aとともに1,2-BN-ベンズバレン3aが生成することを見いだした(図2A)。さらに、照射時間を20分に延長したところ、3aを単一で与えた。基質適用範囲の調査から、C5位には広範なアリール基が適用できる一方、窒素上にはシリル基が必要であることが明らかとなった(詳細は論文参照)。中でも、N-トリフェニルシリル基をもつ3bで結晶が得られたため、1b3bについてX線結晶構造解析を行なった。芳香族性をもつ1bから3bへの光異性化に伴い、二重結合が局在化し、B–N結合長の短縮が観測されたため、3bのベンズバレン構造が立証された(図2B)。
光照射時間の延長により、2aが消失し、3aの収率が向上した結果より、本異性化は2aを反応中間体として経ることが示唆された。そこで機構解明実験を実施した(図2C)。まず、2aに紫外光を照射したところ、高収率で3aに異性化し、2aが本反応の反応中間体であることを裏付けた。次に、重水素化体1cに光を照射すると、2cが生成した。また、20分間照射すると3cが生成し、C3位の重水素が3cの橋頭位へ移動した。以上の結果から、2cから3cへの変換の過程でB–C3結合の切断と転位が起こると考え、著者らは本異性化の反応機構を以下のように推定した(図2D)。まず、4p電子環状反応により1,2-アザボリン1が1,2-BN-デュワーベンゼン2に異性化した後、更なる光照射で2のオレフィンからビラジカルが生じる(24)。C4位とC3位間での1,2-ラジカルボロンシフト(45)と続くラジカル再結合により3が得られる。C5位のアリール基は共鳴安定化により、ビラジカル4の形成を促進していると考えられる。

図2 (A) 1,2-アザボリンの光異性化 (B) 光異性化に伴うB–N結合長の変化 (C) 機構解明実験 (D) 推定反応機構

以上、1,2-アザボリンの光異性化反応により、初めてホウ素および窒素を有するベンズバレンの合成が達成された。本反応はヘテロベンズバレンの合成に新たな切り口を生むと同時に、特異な三次元構造をもつ含B-N結合化合物として基礎研究や生物医学への利用が期待される。

参考文献

  1. (a) Christl, M. Benzvalene-Properties and Synthetic Potential. Angew. Chem., Int. Ed. 1981, 20, 529–546. DOI: 10.1002/anie.198105291 (b) Bettinger, H. F.; Schreiner, P. R.; Schaefer, H. F.; Schleyer, P. v. R. Rearrangements on the C6H6 Potential Energy Surface and the Topomerization of Benzene. J. Am. Chem Soc. 1998, 120, 5741–5750. DOI: 10.1021/ja973270z
  2. (a) Kobayashi, Y.; Fujino, S.; Hamana, H.; Kumadaki, I.; Hanzawa, Y. A Trifluoromethylated Diphosphabenzvalene: 1,3,4,6-Tetrakis(trifluoromethyl)-2,5-diphosphatricyclo[3.1.0.02,6]hexene-3. J. Am. Chem. Soc. 1977, 99, 8511–8511. DOI: 10.1021/ja00468a026 (b) Piro, N. A.; Cummins, C. C. Tetraphosphabenzenes Obtained via a Triphosphacyclobutadiene Intermediate. Angew. Chem., Int. Ed. 2009, 48, 934–938. DOI: 10.1002/anie.200804432 (c) Ando, W.; Shiba, T.; Hidaka, T.; Morihashi, K.; Kikuchi, O. Syntheses and Characterization of Bis(silacyclopropene) and Disilabenzvalene. J. Am. Chem. Soc. 1997, 119, 3629–3630. DOI: 10.1021/ja9637412 (d) Takanashi, K.; Lee, V. Y.; Ichinohe, M.; Sekiguchi, A. 1,2,5,6-Tetrasilabenzobenzvalene: A Valence Isomer of 1,2,3,4-Tetrasilanaphthalene. Chem. Lett. 2007, 36, 1158–1159. DOI: 10.1246/cl.2007.1158 (e) Nakata, N.; Oikawa, T.; Matsumoto, T.; Kabe, Y.; Sekiguchi, A. Silyl-Substituted 1,4-Disila(Dewar Benzene):  New Synthesis and Unexpected Insertion of CO into the Si–Si Bond to Form a Disilyl Ketone. Organometallics 2005, 24, 3368–3370. DOI: 10.1021/om050261n
  3. (a) Corey, E. J.; Pirkle, W. H. Tricyclo[23,6.1.1.0]pyran-2-o Tetrahedron Lett. 1967, 8, 5255–5256. DOI: 10.1016/s0040-4039(01)89655-6 (b) Burger, U.; Dreier, F. Reactions of Nitrogen Containing Aromatic Anions with Chlorocarbene. Tetrahedron 1983, 39, 2065–2071. DOI: 10.1016/s0040-4020(01)91924-6
  4. (a) Brough, S. A.; Lamm, A. N.; Liu, S.; Bettinger, H. F. Photoisomerization of 1,2‐Dihydro‐1,2‐azaborine: A Matrix Isolation Study. Angew. Chem., Int.Ed. 2012, 51, 10880–10883. DOI: 10.1002/anie.201203546 (b) Edel, K.; Yang, X.; Ishibashi, J. S. A.; Lamm, A. N.; Maichle‐Mössmer, C.; Giustra, Z. X.; Liu, S.; Bettinger, H. F. The Dewar Isomer of 1,2‐Dihydro‐1,2‐azaborinines: Isolation, Fragmentation, and Energy Storage. Angew. Chem., Int. Ed. 2018, 57,5296–5300. DOI: 10.1002/anie.201712683
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 高分子ってよく聞くけど、何がすごいの?
  2. 目指せ抗がん剤!光と転位でインドールの(逆)プレニル化
  3. アルミニウムで水素分子を活性化する
  4. 聖なる牛の尿から金を発見!(?)
  5. 環状ビナフチルオリゴマーの大きさが円偏光の向きを変える
  6. 触媒的炭素–水素結合活性化による含七員環ナノカーボンの合成 〜容…
  7. 配位子を着せ替え!?クロースカップリング反応
  8. アゾ重合開始剤の特徴と選び方

注目情報

ピックアップ記事

  1. メルドラム酸:Meldrum’s Acid
  2. オゾンホールのさらなる縮小を確認 – アメリカ海洋大気庁発表
  3. 消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立
  4. アハメド・ズウェイル Ahmed H. Zewail
  5. 始めよう!3Dプリンターを使った実験器具DIY:3D CADを使った設計編その2
  6. 海外のインターンに参加してみよう
  7. 2018年1月20日:ケムステ主催「化学業界 企業研究セミナー」
  8. トリフルオロ酢酸パラジウム(II):Palladium(II) Trifluoroacetate
  9. 生きた細胞内のヘムを検出する蛍光プローブ
  10. 高知市で「化学界の権威」を紹介する展示が開催中

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー