[スポンサーリンク]

スポットライトリサーチ

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

[スポンサーリンク]

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の山西 恭輔 さんにお願いしました。

今回ご紹介するのは、天然物を不斉触媒として開発した研究についてです。天然物は生物活性に注目されることが多く、不斉触媒としての検討はほとんどされてきていませんでした。本研究では天然物の3種のアルカロイドが不斉マイケル反応の触媒として利用できることを報告されました。今回見出した天然物の誘導化による触媒活性の向上や、エナンチオ選択性制御について計算化学による解明も行われています。本研究は、J. Am. Chem. Soc. 誌 原著論文およびプレスリリースに公開されています。

New Entries in Organocatalysts from an Alkaloid Library; Development of Aminal Catalysis for a Michael Reaction Based on Calycanthine
Yamanishi, K.; Ashihara, G.; Shiomi, S.; Harada, S.; Kitajima, M.; Takayama, H.; Ishikawa, H., J. Am. Chem. Soc. 2024, 146, 27152–27160.  DOI: 10.1021/jacs.4c10242

研究室を主宰されている石川勇人 教授から、山西さんについて以下のコメントを頂いています。それでは今回もインタビューをお楽しみください!

山西君は、実は私の前任の高山廣光名誉教授から天然物化学の薫陶を受けた最後の学生です。論文を読んでいただければお気づきになるかと思いますが、この研究の出発点は天然物の単離研究にあります。さらに、本論文には、天然物の全合成、その天然物を触媒とした不斉有機触媒反応の開発、加えて計算化学による反応機構の解明など、多岐にわたる内容が含まれています。このように広範な分野にわたる研究を、ほぼ一人で遂行したのが山西君です。

山西君が修士1年の時に私が着任し、それから彼は無駄のない実験と的確な考察により、驚くべきスピードで天然物の全合成、触媒反応の設計、そしてエナンチオ選択性の向上を成し遂げていきました。反応が完成すると、当然のことながら、我々はこの天然物由来の触媒による不斉誘起メカニズムに強い興味を抱きましたが、その解明には実験的アプローチだけでは限界がありました。そこで山西君は、研究室の垣根を超えて原田慎吾准教授の下で計算科学を学び、私には到底理解できない高度な技術を習得し、実践に移しました。そして、従来例のない非古典的な水素結合による反応遷移状態を見事に導き出してくれました。彼が美しい水素結合ネットワークを示してくれた時は、感動すると同時に、彼の卓越した能力に心から驚嘆しました。今後もさらなる活躍が期待できる、非常に優秀でバイタリティあふれる人材です。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

有機分子触媒は、安価、安全であり、無水、無酸素といった厳密な反応条件を必要としないといった利点を持ち、2021年にはノーベル化学賞の受賞対象となっています。これまで開発されてきた不斉有機分子触媒の多くは、人工的に設計、合成されたものですが唯一、 マラリアの特効薬であるキナの木から単離されるキニーネが、1900 年代初頭から不斉有機触媒として機能することが知られています。しかし歴史的に、植物由来の天然物に関する研究は主に医薬への応用に集中していたため、触媒としての機能評価は行われてきませんでした。我々は当研究室の約 500 種のアルカロイドライブラリーの中から新たな触媒機能を持つ天然物を発見し、その触媒機能向上及び解析を行いました。その結果、数多くの天然物が不斉有機触媒として機能することを発見し、その中でも蓬莱葛(ホウライカズラ)から単離されるガルドネリン、下野(シモツケ)から単離されるスピラジンA, 蝋梅(ロウバイ)から単離されるカリカンチンの3つの天然物が高い触媒活性を有していることを見出しました(Figure1)。

そして、今回その中からカリカンチンとその誘導体を用いてさらなるエナンチオ比向上を目指しました。その結果ヨウ素を導入した誘導体を用いて不斉反応を行うとエナンチオ比は96:4まで向上しました(Figure 2)。これまでにカリカンチンに類似する不斉有機触媒は開発されておらず、当研究室の天然物ライブラリーから新しいモダリティの不斉有機触媒を見つけ出すことに成功しました。

本反応の遷移状態を計算科学によって求めるとアミナール部位と基質との水素結合だけでなく、アミナールC-Hと安息香酸からなる非古典的な水素結合を含んだ、4分子間の水素結合ネットワークが明らかとなりました(Figure 3)。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

最も思い入れがある点は反応系の設定です。天然物が持つ弱い水素結合を反応の触媒として利用しようとしたためか、天然物が触媒として作用して反応が進行する系を見つけるのが非常に難しく、条件設定の段階でかなり苦戦していました。特に、反応や基質が単純であるほど反応が進行しにくく、たとえ反応が進んでも、不斉がほとんど誘起されない状況が続きました。今回は、オキシインドールの影響でエノール体がNMRでも観測できるような1,3-ジカルボニル構造を持つ基質と、求電子性の高いニトロスチレンを用いることで、ちょうど良い反応系を設計することができました。これらの基質には、水素結合を形成できる部位が多く、オキシインドールのPMB基やニトロスチレンのPh基による立体障害があるため、天然物をスクリーニングする際にエナンチオ比の差が出やすくなったのだと思います。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

遷移状態の計算です。研究室に計算を専門とする人がいなかったため、千葉大学大学院薬学研究院薬化学研究室に所属する原田慎吾先生に、構造最適化や簡単なDiels-Alder反応の遷移状態の求め方から教えていただきました。紙の上で考えた遷移状態や分子模型での予想とは、計算で得られる遷移状態が全く異なっており、当初は大いに苦労しました。特に今回の遷移状態は4分子が関わっているため、可能性のあるパターンが非常に多く、一つ一つの選択肢を検証して潰していく作業が大変でした。しかし、計算科学のスペシャリストである原田先生が一緒に考えてくださったおかげで、約2年かけて実験結果と合致する遷移状態を導くことができました。

さらに、カリカンチンの抽出から全合成、反応開発、そして遷移状態の計算まで、有機化学のさまざまな分野を一つの論文にまとめることも大変でした。多くのことを詰め込んだため、論文化までにかなりの時間を要しましたが、これらすべての要素が揃っていたからこそ、論文投稿やプレスリリースの発表が実現したのだと思います。

Q4. 将来は化学とどう関わっていきたいですか?

製薬企業の研究職として、新薬の研究開発を行う予定です。研究室での最先端を追い求める研究もとても楽しく充実していましたが、直接人々の役に立つような研究ができることがとても楽しみです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

最後までお読みいただき、ありがとうございます。振り返ってみると、今回の研究のターニングポイントには、さまざまな方々のアドバイスや支えがあったことを強く感じます。学士、修士、そして博士課程の学生であっても、一人でできる研究には限界があります。だからこそ、「自分は自分が知らないことを知っている」という言葉を胸に研究室の先生や仲間、そして時には研究室の垣根を越えて知識を得ることの重要性をお伝えしたいと思います。

最後になりますが、自分に化学の面白さを教えてくださった高山廣光千葉大学名誉教授、計算科学を一からご指導いただいた原田先生、天然物のスクリーニングを手伝ってくれた芦原君、NMRや細かなデータ解析を手伝ってくれた北島先生、そして今回の研究を継続させて頂き、サポートしてくださった石川先生に、この場をお借りして深く感謝申し上げます。また、普段の研究生活を支え、いつでも気軽に飲みに付き合ってくれる研究室の仲間たちにも心から感謝しています。さらに、このような素晴らしい機会を与えてくださったChem-Stationのスタッフの皆さまにも、厚くお礼申し上げます。

研究者の略歴

名前:山西 恭輔 (やまにし きょうすけ)
所属:千葉大学大学院医学薬学府先端創薬科学専攻
略歴:
2020年3月千葉大学薬学部 卒業
2020年4月千葉大学大学院医学薬学府総合薬品科学専攻 入学
2022年3月千葉大学大学院医学薬学府総合薬品科学専攻 修了
2022年4月千葉大学大学院医学薬学府先端創薬科学専攻 入学

関連リンク

  1. 論文 : New Entries in Organocatalysts from an Alkaloid Library; Development of Aminal Catalysis for a Michael Reaction Based on Calycanthine | Journal of the American Chemical Society
  2. プレスリリース :リンク
  3. 研究室 : 中分子化学研究室 | 千葉大学 大学院薬学研究院

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. 無保護糖を原料とするシアル酸誘導体の触媒的合成
  2. 希望する研究開発職への転職を実現 「短い在籍期間」の不利を克服し…
  3. 2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予…
  4. 日本農芸化学会創立100周年記念展に行ってみた
  5. ポンコツ博士の海外奮闘録 外伝① 〜調剤薬局18時〜
  6. ケムステSlack、開設二周年!
  7. オピオイド受容体、オレキシン受容体を標的とした創薬研究ーChem…
  8. 混合原子価による芳香族性

注目情報

ピックアップ記事

  1. セレノフェン : Selenophene
  2. 2016年4月の注目化学書籍
  3. 合成化学者のための固体DNP-NMR
  4. 第23回「化学結合の自在切断 ・自在構築を夢見て」侯 召民 教授
  5. 自律的に化学実験するロボット科学者、研究の自動化に成功 8日間で約700回の実験、人間なら数カ月
  6. 有機合成のナビゲーター
  7. フィッシャー インドール合成 Fischer Indole Synthesis
  8. 1回飲むだけのインフル新薬、5月発売へ 塩野義製薬
  9. 高橋 雅英 Takahashi Masahide
  10. 官営八幡製鐵所関連施設

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年11月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

ディストニックラジカルによる多様なアンモニウム塩の合成法

第643回のスポットライトリサーチは、関西学院大学理工学研究科 村上研究室の木之下 拓海(きのした …

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー