[スポンサーリンク]

化学者のつぶやき

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

[スポンサーリンク]

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成功した。さらに、ペリレンビスイミド骨格の湾曲が大きくなるほどHOMO–LUMOギャップが小さくなることが、各種測定により確かめられた。

曲がったp共役系の合成

非平面p共役分子は、それぞれの構造に由来する特異な光学的、電気的物性を発現するため、有機合成化学者の注目を集めてきた。中でも、本来平面構造であるp共役系をリンカーによって歪ませる方法が盛んに研究されてきた。本手法は、結合を形成する際に歪みを組み込む必要があるため、その構築方法は限られている。代表例として、Bodwellらの電子環化反応を経由する湾曲したピレンの構築法が挙げられる(図1A)[1]。その他に、金属触媒を用いた還元的脱離による結合形成や、Dewarベンゼンなど芳香族前駆体の芳香族化が知られる[2,3]。このように構築方法は、曲がった前駆体をもち、結合形成の際に生じる歪みを克服できる反応に限られている。

一方、著者の忍久保、福井らは以前、硫黄原子の導入によって湾曲したペリレンビスイミド(PBI)骨格の脱硫により、平面PBI骨格となることを報告している(図1B)[4]。今回著者らは、アルキル鎖のリンカーによって末端同士が接続されたV字型PBI誘導体を設計し、脱硫反応を湾曲したp共役系の構築に適用させた。実際、V字型前駆体に対して紫外光を照射することで、脱硫反応が進行し、湾曲したPBI骨格の構築に成功した[5]。また、PBI誘導体の湾曲構造がp共役系に及ぼす化学的、物理的性質への影響を調査した初めての例となった[6]

図1. (A) 湾曲した共役系へのアプローチ (B)脱硫によるPBI誘導体の合成

“End-to-End Bent Perylene Bisimide Cyclophanes by Double Sulfur Extrusion”

Tanaka, Y.; Tajima, K.; Kusumoto, R.; Kobori, Y.; Fukui, N.; Shinokubo, H. J. Am. Chem. Soc. 2024, 146, 16332–16339.  DOI: 10.1021/jacs.4c05358 

論文著者の紹介

研究者:忍久保洋 (研究室HP)

研究者の経歴:

1994–1995 Doctorial Program, Kyoto University, Japan (Profs. Kiichiro Utimoto and Koichiro Oshima) 
1995–2003 Assistant Professor, Kyoto University, Japan (Profs. Kiichiro Utimoto and Koichiro Oshima)
1998 Ph.D., Kyoto University, Japan (Profs. Kiichiro Utimoto and Koichiro Oshima)
1999–2000 Research Fellow, Massachusetts Institute of Technology, USA (Prof. Rick L. Danheiser)
2003–2008 Associate Professor, Kyoto University, Japan
2008– Professor, Nagoya University, Japan
研究内容:p共役有機化合物の創成と物性の調査、生体機能を模倣した遷移金属錯体触媒の設計

 

研究者:福井識人

研究者の経歴:
2013 B.S., Kyoto University, Japan
2015 M.S., Kyoto University, Japan (Profs. Atsuhiro Osuka and Hideki Yorimitsu) 
2018 Ph.D., Kyoto University, Japan (Prof. Atsuhiro Osuka)
2018–2022 Assistant Professor, Nagoya University, Japan (Prof. Hiroshi Shinokubo)
2022– Associate Professor (Lecturer), Nagoya University, Japan (Prof. Hiroshi Shinokubo)
研究内容:p共役分子の骨格内部の結合開裂を基盤とする新物質創製

研究者:小堀康博 (研究室HP)

研究者の経歴:
–1996 Doctorial Program, Tokyo Institute of Technology, Japan (Prof. Kinichi Obi)
1997–1999 Assistant Professor, Tohoku University, Japan (Prof. Shozo Tero)
1998 Ph.D., Tokyo Institute of Technology, Japan (Prof. Kinichi Obi)
2001–2006 Postdoc, University of Chicago, USA (Prof. James R. Norris, Jr.) 
2007 Assistant Professor, Shizuoka University, Japan
2007–2013 Associate Professor, Shizuoka University, Japan
2013– Professor, Shizuoka University, Japan
研究内容:電子スピン共鳴法を用いた光反応における分子の立体構造および分子軌道、分子運動の解析

論文の概要

著者らの先行研究をもとに合成したビスイミド1にジブロモアルカンを反応させ、リンカー長の異なるスルフィド2a–2cとし、続く酸化によりV字型前駆体3a–3cとした(図2A)[7]。合成したV字型前駆体に紫外光を照射することで脱硫反応が進行し、PBI誘導体4a–4cを高い収率で与えた(条件検討は論文参照)[4]。X線結晶構造解析により、4a–4cが湾曲していることが明らかにされた(図2B)。リンカー長が短くなるにつれ、PBI骨格の湾曲は大きくなる。この結果は、湾曲p共役系の構築手法として、脱硫によるp共役系の構築反応が適用できることを実証している。

続いて、著者らは4a–4c、および平面PBI誘導体4’の光学特性を調査した(図2C)。紫外可視光吸収スペクトルは、骨格の湾曲が大きいほど、最長吸収波長が長波長シフトしている。通常、p共役系の歪みが大きくなると、吸収波長は短波長シフトすることが知られており、今回の結果と一致しない[1]。これは、PBIの軌道の対称性から、歪みによってLUMOでは結合性、HOMOでは反結合性の相互作用が大きくなり、HOMO–LUMOギャップが小さくなったためだと考察した[8]。また、分子の湾曲の変化に伴って、量子収率やストークスシフトなど他の光学特性、溶媒への溶解性が変化することも明らかにしている(詳細は論文参照)。

図2. (A) PBI誘導体4a–4cの合成 (B) 4a–4cの屈曲角 (C) 4a–4cおよび4’の光学特性

 

以上、紫外光による脱硫反応を利用することで、湾曲したPBI誘導体が合成された。また、湾曲構造は光学特性に大きな影響を与えており、その性質を生かした有機材料の開発が期待される。

参考文献

  1. (a) Bodwell, G. J.; Bridson, J. N.; Houghton, T. J.; Kennedy, J. W. J.; Mannion, M. R. 1,8-Dioxa[8](2,7)pyrenophane, a Severely Distorted Polycyclic Aromatic Hydrocarbon. Angew. Chem., Int. Ed. 1996, 35, 1320−1321. DOI: 10.1002/anie.199613201 (b) Ghasemabadi, P. G.; Yao, T.; Bodwell, G. J. Cyclophanes Containing Large Polycyclic Aromatic Hydrocarbons. Chem. Soc. Rev. 2015, 44, 6494–6518. DOI: 10.1039/C5CS00274E (c) Unikela, K. S.; Roemmele, T. L.; Houska, V.; McGrath, K. E.; Tobin, D. M.; Dawe, L. N.; Boeré, R. T.; Bodwell, G. J. Gram-Scale Synthesis and Highly Regioselective Bromination of 1,1,9,9-Tetramethyl[9](2,11)teropyrenophane. Angew. Chem., Int. Ed. 2018, 57, 1707−1711. DOI: 10.1002/anie.201713067
  2.  (a) Yamago, S.; Watanabe, Y.; Iwamoto, T. Synthesis of [8]Cycloparaphenylene from a Square-Shaped Tetranuclear Platinum Complex. Angew. Chem., Int. Ed. 2010, 49, 757−759. DOI: 10.1002/anie.200905659 (b) Tsuchido, Y.; Abe, R.; Ide, T.; Osakada, K. A Macrocyclic Gold(I)−Biphenylene Complex: Triangular Molecular Structure with Twisted Au2(diphosphine) Corners and Reductive Elimination of [6]Cycloparaphenylene. Angew. Chem., Int. Ed. 2020, 59, 22928−22932. DOI: 10.1002/anie.202005482
  3. (a) Kane, V. V.; De Wolf, W. H.; Bickelhaupth, F. Synthesis of Small Cyclophanes. Tetrahedron 1994, 50, 4575−4622. DOI: 10.1016/S0040-4020(01)85002-X (b) Jenneskens, L. W.; de Kanter, F. J. J.; Kraakman, P. A.; Turkenburg, L. A. M.; Koolhaas, W. E.; de Wolf, W. H.; Bickelhaupt, F.; Tobe, Y.; Kakiuchi, K.; Odaira, Y. [5]Paracyclophane. J. Am. Chem. Soc. 1985, 107, 3716−3717. DOI: 10.1021/ja00298a051 (c) Tobe, Y.; Kawaguchi, M.; Kakiuchi, K.; Naemura, K. [2.2]Orthoparacyclophane: The Last and Most Strained [2.2]Cyclophane. J. Am. Chem. Soc. 1993, 115, 1173−1174. DOI: 10.1021/ja00056a066 (d) Jasti, R.; Bhattacharjee, J.; Neaton, J. B.; Bertozzi, C. R. Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]-Cycloparaphenylene: Carbon Nanohoop Structures. J. Am. Chem. Soc. 2008, 130, 17646−17647. DOI: 10.1021/ja807126u (e) Takaba, H.; Omachi, H.; Yamamoto, Y.; Bouffard, J.; Itami, K. Selective Synthesis of [12]Cycloparaphenylene. Angew. Chem., Int. Ed. 2009, 48, 6112−6116. DOI: 10.1002/anie.200902617
  4. (a) Hayakawa, S.; Matsuo, K.; Yamada, H.; Fukui, N.; Shinokubo, H. Dinaphthothiepine Bisimide and Its Sulfoxide: Soluble Precursors for Perylene Bisimide. J. Am. Chem. Soc. 2020, 142, 11663−11668. DOI: 10.1021/jacs.0c04096 (b) Tanaka, Y.; Matsuo, K.; Yamada, H.; Fukui, N.; Shinokubo, H. Gram-Scale Diversity-Oriented Synthesis of Dinaphthothiepine Bisimides as Soluble Precursors for Perylene Bisimides. Eur. J. Org. Chem. 2022,  e202200770. DOI: 10.1002/ejoc.202200770
  5. 脱硫反応による湾曲p共役分子の合成は報告されているが、これまではsp3–sp3結合形成に限定されていた:Lewis, S. E. Cycloparaphenylenes and Related Nanohoops. Chem. Soc. Rev. 2015, 44, 2221−2304. DOI: 10.1039/C4CS00366G
  6. 歪んだ構造のPBI誘導体の合成例はすでに報告がある。しかし、いずれもリンカーがp共役系で構成されているため、PBI構造の湾曲による影響のみの議論はできなかった:(a) Liu, T.; Yang, J.; Geyer, F.; Conrad-Burton, F. S.; Hernández Sánchez, R.; Li, H.; Zhu, X.; Nuckolls, C. P.; Steigerwald, M. L.; Xiao, S. Stringing the Perylene Diimide Bow. Angew. Chem., Int. Ed. 2020, 59, 14303−14307. DOI: 10.1002/anie.202004989 (b) Li, A.; Zhang, X.; Wang, S.; Wei, K.; Du, P. Synthesis and Physical Properties of a Perylene Diimide-Embedded Chiral Conjugated Macrocycle. Org. Lett. 2023, 25, 1183−1187. DOI: 10.1021/acs.orglett.3c00152 (c) Bold, K.; Stolte, M.; Shoyama, K.; Krause, A.; Schmiedel, A.; Holzapfel, M.; Lambert, C.; Würthner, F. Macrocyclic Donor-Acceptor Dyads Composed of Oligothiophene Half-Cycles and Perylene Bisimides. Chem. Eur. J. 2022, e202200355. DOI: 10.1002/chem.202200355
  7. Tanaka, Y.; Tajima, K.; Fukui, N.; Shinokubo, H. Dinaphtho[1,8-bc:1′,8′-fg][1,5]dithiocine Bisimide. Asian J. Org. Chem. 2021, 10, 541−544. DOI: 10.1002/ajoc.202000722
  8. Cruz, C. M.; Walsh, J. C.; Jurícěk, M. Bending Pyrenacenes to Fill Gaps in Singlet-Fission-Based Solar Cells. Org. Mater. 2022, 4, 163−169. DOI: 10.1055/a-1939-6110
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 多孔性材料の動的核偏極化【生体分子の高感度MRI観測への一歩】
  2. 2009年10大分子発表!
  3. サイエンスアゴラの魅力-食用昆虫科学研究会・「蟲ソムリエ」中の人…
  4. Happy Mole Day to You !!
  5. 『Ph.D.』の起源をちょっと調べてみました① 概要編
  6. 2023年度第1回日本化学連合シンポジウム「ヒューメインな化学 …
  7. リアル『ドライ・ライト』? ナノチューブを用いた新しい蓄熱分子の…
  8. 就職か進学かの分かれ道

注目情報

ピックアップ記事

  1. 【第二回】シード/リード化合物の合成
  2. 有賀 克彦 Katsuhiko Ariga
  3. 薬の副作用2477症例、HP公開始まる
  4. 有機合成化学協会誌2019年5月号:特集号 ラジカル種の利用最前線
  5. マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方とは?
  6. エステルを使った新しいカップリング反応
  7. 松本・早大教授の論文、学会は「捏造の事実無し」
  8. 薄くて巻ける有機ELディスプレー・京大など開発
  9. 二酸化セレン Selenium Dioxide
  10. ソニー、新型リチウムイオン充電池「Nexelion」発売

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年11月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

ミトコンドリア内タンパク質を分解する標的タンパク質分解技術「mitoTPD」の開発

第 631 回のスポットライトリサーチは、東北大学大学院 生命科学研究科 修士課程2…

永木愛一郎 Aiichiro Nagaki

永木愛一郎(1973年1月23日-)は、日本の化学者である。現在北海道大学大学院理学研究院化学部…

11/16(土)Zoom開催 【10:30~博士課程×女性のキャリア】 【14:00~富士フイルム・レゾナック 女子学生のためのセミナー】

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。11/16…

KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発』 ~水・生体環境下で優れた機能を発揮させるための材料・表面・デバイス設計~

 開講期間 令和6年12月10日(火)、11日(水)詳細・お申し込みはこちら2 コースの…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP