[スポンサーリンク]

一般的な話題

光と励起子が混ざった準粒子 ”励起子ポラリトン”

[スポンサーリンク]

励起子とは

半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠陥がプラスの電荷を持ち、準粒子として扱うことができる。この準粒子を正孔またはホールと呼ぶ。正孔は伝導帯の電子とクーロン力で結びつき、一定の距離を保ったまま物質内を動き回る。そのため、この電子-正孔のペアは一つの粒子としてみなすことができる。この粒子を励起子と呼ぶ。励起子には2つの種類があり、電子-正孔の半径が10-100Å程度の結晶中に広がるほど大きなものをモット-ワニエ(Mott-Wannier)励起子、半径が1-10Å程度の分子内に収まるような小さな励起子をフレンケル(Frenkel)励起子と呼ぶ(図1)。Mott-Wannier励起子は主に無機半導体中の励起子を表しており、Frenkel励起子は主に分子性結晶中での電子励起状態を表していると考えることができる。

図1. Mott-Wannier励起子とFrenkel励起子

励起子ポラリトン Exciton-polariton

励起子ポラリトンとは、光のエネルギー状態と励起子のエネルギー状態が結合した結果生じる準粒子である。光は波動方程式によって波として記述することができる。また、ド・ブロイ波の概念より、励起子も波として記述することができる。波は重ね合わせることが可能となるため、この重ね合わさった状態を、励起子ポラリトンという新たな物質の状態としてとらえることができる。励起子ポラリトンが形成されると、光のエネルギー準位と励起子のエネルギー準位が結合し、エネルギーが分子軌道のように2つの状態に分裂する(図2)。エネルギーが高いものをアッパーポラリトン(Upper Polariton, UP)、低いものをロウワーポラリトン(Lower Polariton, LP)と呼び、両者のエネルギー差()をラビ分裂(Rabi splitting)と呼ぶ。この現象により、本来の物質が持つ準位構造を変化させることができる。

図2. 励起子ポラリトンのエネルギー準位図

励起子ポラリトンの発生

2枚のミラーを向かい合わせにしたキャビティ(共振器とも呼ぶ)構造を用いると、光を閉じ込めることができる。このときミラーの距離を入射光の波長の整数倍/2の長さにすることで、光が何度も往復して干渉し、定在波となる (図3)。このキャビティに閉じ込められた光子をキャビティ光子と呼び、離散的なエネルギー準位が形成される。

図3. 定在波ができる過程

キャビティの中に発光効率の良い半導体などを入れ、光を入射することで電子が励起され、正孔と結びついて励起子を形成する。この励起子の吸収ピークと定在波のピーク(キャビティモードと呼ぶ)が一致するようにキャビティの幅を調整することで、励起子がエネルギーを光子として放出した瞬間に定在波によって再度励起されるという現象が発生する。また、半導体から放出された光子はキャビティ内を往復するため、放出された光子が再度半導体に吸収される。この状況は、光と励起子の間でエネルギーが共有されているとみなせる。この状態を強結合状態と呼び、生成される混成状態を励起子ポラリトンという準粒子として扱う。

 

励起子ポラリトンの性質と応用

励起子ポラリトン状態では、物質と光の状態が混ざったような物性を確認することができる。具体的には、物質由来のスピンの情報をもちあわせた偏光を示す一方、光由来の超高速かつ超軽量な性質を持つ。また、分子間のエネルギーの授受において、エネルギーを受容する分子をポラリトン状態にし、エネルギーを供与する分子のエネルギーに近い準位を新たに形成することで、分子間の軌道の相互作用が大きくなり、高効率なエネルギー輸送ができるとされている。この現象を用いることで、高効率なエネルギー変換を叶える太陽電池の開発などに応用できるのではないかとの期待が高まっている。

 

参考文献

Skolnick, M. S.; Fisher, T. A.; Whittaker, D. M., Semicond. Sci.Technol. 1998, 13, 645-669.

 

関連書籍

半導体の光物性

半導体の光物性

中山 正昭
¥5,500(as of 11/20 19:03)
Amazon product information
光物性入門

光物性入門

小林 浩一
¥3,520(as of 11/20 19:03)
Amazon product information

 

 

植木 穂香

投稿者の記事一覧

奈良先端大のM2です。ポラリトンについて研究しています。

関連記事

  1. アメリカ化学留学 ”立志編 ー留学の種類ー̶…
  2. マテリアルズ・インフォマティクスを実践するためのベイズ最適化入門…
  3. カーボン系固体酸触媒
  4. アルカリ金属でメトキシアレーンを求核的にアミノ化する
  5. 硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築
  6. ケムステ版・ノーベル化学賞候補者リスト【2023年版】
  7. アメリカで医者にかかる
  8. コーヒーブレイク

注目情報

ピックアップ記事

  1. 有機アジド(3):アジド導入反応剤
  2. 東京化成工業がケムステVシンポに協賛しました
  3. TSMCを支える化学企業
  4. トリス(2,4-ペンタンジオナト)鉄(III):Tris(2,4-pentanedionato)iron(III)
  5. 白い粉の正体は…入れ歯洗浄剤
  6. 未来の製薬を支える技術 – Biotage®金属スカベンジャーツールキット
  7. マイヤース 不斉アルキル化 Myers Asymmetric Alkylation
  8. ニセ試薬のサプライチェーン
  9. 研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-
  10. 未来のノーベル化学賞候補者

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP