[スポンサーリンク]

化学者のつぶやき

遷移金属触媒がいらないC–Nクロスカップリング反応

[スポンサーリンク]

遷移金属触媒を用いないC–Nカップリング反応が報告された。フェノールとアミンがジクロロピラジンにSNAr反応することで両者が近接化、電子的活性化され、C–N結合が形成される。

C–Nクロスカップリング反応

Buchwald–Hartwigアミノ化をはじめとする遷移金属触媒を用いたC–Nクロスカップリング反応は、1990年代から精力的に開発が進められており、医薬品合成等で頻繁に用いられる(図1A)[1,2]。遷移金属触媒を用いた同反応は、官能基許容性は高いが高価な金属や配位子を必要とし、水や空気に敏感な条件も多い。一方で、遷移金属触媒を用いないアミノ化反応として、古くより芳香族求核置換(SNAr)反応が知られているが、この反応は電子求引性基や脱離能の高い置換基をもつ芳香環に限られる。そのため、官能基許容性の高い遷移金属を用いないC–Nクロスカップリング反応の開発が望まれる。

2008年にBiらは、塩基性条件下、クロロアミノピラジンとフェノールをマイクロ波照射下、加熱すると、フェノールのSNAr反応、続くSmiles転位が進行し、N-アリールアミノピラジノンを合成できることを見いだした(図1B)[3]。また、2020年に著者らはクロロピラジン2を用いたピリジン1のC2位アミノ化反応を報告した(図1C)[4]。この反応では12のSNAr反応の後、電子不足なピリジンのC2位へアミノ基が転位する。最後に、還元的にピラジンを除去することでアミノ化体4を与える。

今回著者らは、Biらの反応を参考にし、ジクロロピラジン7を利用すればフェノール5とアミン6のクロスカップリング反応が進行し、還元処理によりカップリング体8を与えると考えた(図1D)。

図1. (A) 芳香族アミノ化反応 (B) 多置換ピラジンを用いたアミノ化 (C) ピリジンのC2位選択的アミノ化 (D) 遷移金属を用いないC–Nクロスカップリング反応 (本研究)

 

Transition-Metal-Free C−N Cross-Coupling Enabled by a Multifunctional Reagent
Fier, P. S.; Kim, S. J. Am. Chem. Soc. 2024, 146, 6476–6480.
DOI: 10.1021/jacs.4c00871

論文著者の紹介

研究者:Patrick S. Fier

研究者の経歴:

2014                                                    Ph.D., University of California, Berkeley (Prof. John F. Hartwig)
2015–2017          Senior Scientist, Merck & Co., Inc., USA
2017–2020                                       Associate Principal Scientist, Merck & Co., Inc., USA
2020–                                                  Principal Scientist, Merck & Co., Inc., USA

研究内容:合成終盤で利用可能な官能基変換反応の開発

論文の概要

著者らはC–N結合形成のためにフェノールと第一級アミンの両者を近接化、電子的活性化する試薬として市販のジクロロピラジン7(1.3ドル/mmol)に注目し、反応設計した(図2A)。7とアミン6のSNAr反応によりアミノピラジン9が生成し、続く9とフェノール5のSNAr反応によりフェノキシピラジン10となる。次に、Smiles転位によりピラジンアニオン11を与え、最後に還元的にピラジンを除去することでアミノ化体8を得る。一見シンプルであるが、1) 7の高い求電子性のため、2つの求核剤とのSNAr反応を進行させることができる 2) 10からの脱プロトン化も容易に進行する 3) 11はアニオンの非局在化により、Smiles転位が進行しやすい などの工夫が施されている。

本反応は種々の多数の官能基をもつアルキルアミンや芳香族アミンに適用でき、対応する8を与えた(図2B)。一方、電子豊富なフェノールではSmiles転位が進行しにくいが、電子求引基がなくとも反応は進行する(本文参照)。さらに著者らは、アミノクロロピラジン9-NH2を用いたフェノール5のアミノ化による芳香族第一級アミン8の合成に成功した (図2C)。9-NH2や、59-NH2のSNAr反応によって生じる10-NH2は二量化が進行しやすい[5]。そのため、塩基と5の混合溶液に9-NH2を少量ずつ添加することでピラジンの二量化を抑制し、効率良くアミノ化体8を与えた。

図2. (A) 推定反応機構 (B) 第一級アミンによるアミノ化反応の基質適応範囲 (C) フェノールのアミノ化による芳香族第一級アミン合成

以上、温故知新のC–Nカップリング反応が報告された。創薬現場において、コストや工程数、反応環境を考慮して遷移金属触媒を用いる事ができない場合など、活用される可能性がある。

参考文献

  1. (a) Paul, F.; Patt, J.; Hartwig, J. F. Palladium-Catalyzed Formation of Carbon-Nitrogen Bonds. Reaction Intermediates and Catalyst Improvements in the Hetero Cross-Coupling of Aryl Halides and Tin Amides. J. Am. Chem. Soc. 1994, 116, 5969–5970. DOI: 10.1021/ja00092a058 (b) Guram, A. S.; Buchwald, S. L. Palladium-Catalyzed Aromatic Aminations with in Situ Generated Aminostannanes. J. Am. Chem. Soc. 1994, 116, 7901–7902. DOI: 10.1021/ja00096a059
  2. (a) Emadi, R.; Bahrami Nekoo, A.; Molaverdi, F.; Khorsandi, Z.; Sheibani, R.; Sadeghi-Aliabadi, H. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions in Pharmaceutical Compounds. RSC Adv. 2023, 13, 18715–18733. DOI: 1039/D2RA07412E (b) Rayadurgam, J.; Sana, S.; Sasikumar, M.; Gu, Q. Palladium Catalyzed C–C and C–N Bond Forming Reactions: An Update on the Synthesis of Pharmaceuticals from 2015–2020. Org. Chem. Front. 2021, 8, 384–414. DOI: 10.1039/D0QO01146K (c) Buskes, M. J.; Blanco, M.-J. Impact of Cross-Coupling Reactions in Drug Discovery and Development. Molecules 2020, 25, 3493. DOI: 10.3390/molecules25153493
  3. Bi, F. C.; Aspnes, G. E.; Guzman-Perez, A.; Walker, D. P. Novel Syntheses of 3-Anilino-Pyrazin-2(1H)-ones and 3-Anilino-Quinoxalin-2-(1H)-ones via Microwave-Mediated Smiles Rearrangement. Tetrahedron Lett. 2008, 49, 1832–1835. DOI: 1016/j.tetlet.2008.01.056
  4. Fier, P. S.; Kim, S.; Cohen, R. D. A Multifunctional Reagent Designed for the Site-Selective Amination of Pyridines. J. Am. Chem. Soc. 2020, 142, 8614–8618. DOI: 10.1021/jacs.0c03537
  5. Jaung, J.; Fukunishi, K.; Matsuoka, M. Syntheses and Spectral Properties of 2,3,7,8‐Tetracyano‐5,10‐Dihydrodipyrazino[2,3‐ b :2′,3′‐ e ]Pyrazine. J.Heterocyclic Chem. 1997, 34, 653–657. DOI: 1002/jhet.5570340251
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ネイチャー論文で絶対立体配置の”誤審”
  2. bothの使い方
  3. 高専シンポジウム in KOBE に参加しました –その 1: …
  4. 有機合成化学協会誌2019年1月号:大環状芳香族分子・多環性芳香…
  5. 勤務地にこだわり理想も叶える!転職に成功したエンジニアの話
  6. 【日産化学】新卒採用情報(2026卒)
  7. ケムステVシンポ「最先端有機化学」開催報告(後編)
  8. 第10回ケムステVシンポ「天然物フィロソフィ」を開催します

注目情報

ピックアップ記事

  1. 有機触媒 / Organocatalyst
  2. 企業研究者のためのMI入門①:MI導入目的の明確化と使う言語の選定が最初のポイント!
  3. 中高生・高専生でも研究が学べる!サイエンスメンタープログラム
  4. 【書籍】化学探偵Mr.キュリー5
  5. ハーバート・ブラウン Herbert C. Brown
  6. エッシェンモーザーメチレン化 Eschenmoser Methylenation
  7. 辻・トロスト反応 Tsuji-Trost Reaction
  8. 水素移動を制御する精密な分子設計によるNHC触媒の高活性化
  9. ショウリョウバッタが吐くアレについて
  10. シスプラチン しすぷらちん cisplatin

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP