[スポンサーリンク]

化学者のつぶやき

遷移金属触媒がいらないC–Nクロスカップリング反応

[スポンサーリンク]

遷移金属触媒を用いないC–Nカップリング反応が報告された。フェノールとアミンがジクロロピラジンにSNAr反応することで両者が近接化、電子的活性化され、C–N結合が形成される。

C–Nクロスカップリング反応

Buchwald–Hartwigアミノ化をはじめとする遷移金属触媒を用いたC–Nクロスカップリング反応は、1990年代から精力的に開発が進められており、医薬品合成等で頻繁に用いられる(図1A)[1,2]。遷移金属触媒を用いた同反応は、官能基許容性は高いが高価な金属や配位子を必要とし、水や空気に敏感な条件も多い。一方で、遷移金属触媒を用いないアミノ化反応として、古くより芳香族求核置換(SNAr)反応が知られているが、この反応は電子求引性基や脱離能の高い置換基をもつ芳香環に限られる。そのため、官能基許容性の高い遷移金属を用いないC–Nクロスカップリング反応の開発が望まれる。

2008年にBiらは、塩基性条件下、クロロアミノピラジンとフェノールをマイクロ波照射下、加熱すると、フェノールのSNAr反応、続くSmiles転位が進行し、N-アリールアミノピラジノンを合成できることを見いだした(図1B)[3]。また、2020年に著者らはクロロピラジン2を用いたピリジン1のC2位アミノ化反応を報告した(図1C)[4]。この反応では12のSNAr反応の後、電子不足なピリジンのC2位へアミノ基が転位する。最後に、還元的にピラジンを除去することでアミノ化体4を与える。

今回著者らは、Biらの反応を参考にし、ジクロロピラジン7を利用すればフェノール5とアミン6のクロスカップリング反応が進行し、還元処理によりカップリング体8を与えると考えた(図1D)。

図1. (A) 芳香族アミノ化反応 (B) 多置換ピラジンを用いたアミノ化 (C) ピリジンのC2位選択的アミノ化 (D) 遷移金属を用いないC–Nクロスカップリング反応 (本研究)

 

Transition-Metal-Free C−N Cross-Coupling Enabled by a Multifunctional Reagent
Fier, P. S.; Kim, S. J. Am. Chem. Soc. 2024, 146, 6476–6480.
DOI: 10.1021/jacs.4c00871

論文著者の紹介

研究者:Patrick S. Fier

研究者の経歴:

2014                                                    Ph.D., University of California, Berkeley (Prof. John F. Hartwig)
2015–2017          Senior Scientist, Merck & Co., Inc., USA
2017–2020                                       Associate Principal Scientist, Merck & Co., Inc., USA
2020–                                                  Principal Scientist, Merck & Co., Inc., USA

研究内容:合成終盤で利用可能な官能基変換反応の開発

論文の概要

著者らはC–N結合形成のためにフェノールと第一級アミンの両者を近接化、電子的活性化する試薬として市販のジクロロピラジン7(1.3ドル/mmol)に注目し、反応設計した(図2A)。7とアミン6のSNAr反応によりアミノピラジン9が生成し、続く9とフェノール5のSNAr反応によりフェノキシピラジン10となる。次に、Smiles転位によりピラジンアニオン11を与え、最後に還元的にピラジンを除去することでアミノ化体8を得る。一見シンプルであるが、1) 7の高い求電子性のため、2つの求核剤とのSNAr反応を進行させることができる 2) 10からの脱プロトン化も容易に進行する 3) 11はアニオンの非局在化により、Smiles転位が進行しやすい などの工夫が施されている。

本反応は種々の多数の官能基をもつアルキルアミンや芳香族アミンに適用でき、対応する8を与えた(図2B)。一方、電子豊富なフェノールではSmiles転位が進行しにくいが、電子求引基がなくとも反応は進行する(本文参照)。さらに著者らは、アミノクロロピラジン9-NH2を用いたフェノール5のアミノ化による芳香族第一級アミン8の合成に成功した (図2C)。9-NH2や、59-NH2のSNAr反応によって生じる10-NH2は二量化が進行しやすい[5]。そのため、塩基と5の混合溶液に9-NH2を少量ずつ添加することでピラジンの二量化を抑制し、効率良くアミノ化体8を与えた。

図2. (A) 推定反応機構 (B) 第一級アミンによるアミノ化反応の基質適応範囲 (C) フェノールのアミノ化による芳香族第一級アミン合成

以上、温故知新のC–Nカップリング反応が報告された。創薬現場において、コストや工程数、反応環境を考慮して遷移金属触媒を用いる事ができない場合など、活用される可能性がある。

参考文献

  1. (a) Paul, F.; Patt, J.; Hartwig, J. F. Palladium-Catalyzed Formation of Carbon-Nitrogen Bonds. Reaction Intermediates and Catalyst Improvements in the Hetero Cross-Coupling of Aryl Halides and Tin Amides. J. Am. Chem. Soc. 1994, 116, 5969–5970. DOI: 10.1021/ja00092a058 (b) Guram, A. S.; Buchwald, S. L. Palladium-Catalyzed Aromatic Aminations with in Situ Generated Aminostannanes. J. Am. Chem. Soc. 1994, 116, 7901–7902. DOI: 10.1021/ja00096a059
  2. (a) Emadi, R.; Bahrami Nekoo, A.; Molaverdi, F.; Khorsandi, Z.; Sheibani, R.; Sadeghi-Aliabadi, H. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions in Pharmaceutical Compounds. RSC Adv. 2023, 13, 18715–18733. DOI: 1039/D2RA07412E (b) Rayadurgam, J.; Sana, S.; Sasikumar, M.; Gu, Q. Palladium Catalyzed C–C and C–N Bond Forming Reactions: An Update on the Synthesis of Pharmaceuticals from 2015–2020. Org. Chem. Front. 2021, 8, 384–414. DOI: 10.1039/D0QO01146K (c) Buskes, M. J.; Blanco, M.-J. Impact of Cross-Coupling Reactions in Drug Discovery and Development. Molecules 2020, 25, 3493. DOI: 10.3390/molecules25153493
  3. Bi, F. C.; Aspnes, G. E.; Guzman-Perez, A.; Walker, D. P. Novel Syntheses of 3-Anilino-Pyrazin-2(1H)-ones and 3-Anilino-Quinoxalin-2-(1H)-ones via Microwave-Mediated Smiles Rearrangement. Tetrahedron Lett. 2008, 49, 1832–1835. DOI: 1016/j.tetlet.2008.01.056
  4. Fier, P. S.; Kim, S.; Cohen, R. D. A Multifunctional Reagent Designed for the Site-Selective Amination of Pyridines. J. Am. Chem. Soc. 2020, 142, 8614–8618. DOI: 10.1021/jacs.0c03537
  5. Jaung, J.; Fukunishi, K.; Matsuoka, M. Syntheses and Spectral Properties of 2,3,7,8‐Tetracyano‐5,10‐Dihydrodipyrazino[2,3‐ b :2′,3′‐ e ]Pyrazine. J.Heterocyclic Chem. 1997, 34, 653–657. DOI: 1002/jhet.5570340251
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ぼくらを苦しめる「MUST (NOT)」の呪縛
  2. フェネストレンの新規合成法
  3. 熱や力で真っ二つ!キラルセルフソーティングで構築されるクロミック…
  4. セルロースナノファイバーの真価
  5. 化学の祭典!国際化学オリンピック ”53rd IChO 2021…
  6. マテリアルズ・インフォマティクスにおける分子生成の基礎
  7. NMR Chemical Shifts ー溶媒のNMR論文より
  8. 世界が終わる日までビスマス

注目情報

ピックアップ記事

  1. ケミカルタイムズ 紹介記事シリーズ
  2. フォン・リヒター反応 von Richter Reaction
  3. かさ高い非天然α-アミノ酸の新規合成方法の開発とペプチドへの導入~中分子ペプチド医薬品開発に向けて~
  4. 三共・第一製薬の完全統合、半年程度前倒しを検討
  5. スルホニル保護基 Sulfonyl Protective Group
  6. 光で分子の結合状態を変えることに成功
  7. 自己紹介で差がつく3つのポイント
  8. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!①
  9. 触媒的C-H活性化型ホウ素化反応
  10. マイクロリアクターで新時代!先取りセミナー 【終了】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

2024年度 第24回グリーン・サステイナブル ケミストリー賞 候補業績 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブル ケミストリー ネットワーク会議(略称: …

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

開催日時 2024.09.11 15:00-16:00 申込みはこちら開催概要持続可能な…

第18回 Student Grant Award 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブルケミストリーネットワーク会議(略称:JAC…

杉安和憲 SUGIYASU Kazunori

杉安和憲(SUGIYASU Kazunori, 1977年10月4日〜)は、超分…

化学コミュニケーション賞2024、候補者募集中!

化学コミュニケーション賞は、日本化学連合が2011年に設立した賞です。「化学・化学技術」に対する社会…

相良剛光 SAGARA Yoshimitsu

相良剛光(Yoshimitsu Sagara, 1981年-)は、光機能性超分子…

光化学と私たちの生活そして未来技術へ

はじめに光化学は、エネルギー的に安定な基底状態から不安定な光励起状態への光吸収か…

「可視光アンテナ配位子」でサマリウム還元剤を触媒化

第626回のスポットライトリサーチは、千葉大学国際高等研究基幹・大学院薬学研究院(根本研究室)・栗原…

平井健二 HIRAI Kenji

平井 健二(ひらい けんじ)は、日本の化学者である。専門は、材料化学、光科学。2017年より…

Cu(I) の構造制御による π 逆供与の調節【低圧室温水素貯蔵への一歩】

2024年 Long らは、金属有機構造体中の配位不飽和な三配位銅(I)イオンの幾何構造を系統的に調…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP