[スポンサーリンク]

化学者のつぶやき

そうだ、アルミニウムを丸裸にしてみようじゃないか

[スポンサーリンク]

Nヘテロ環ボリロキシ配位子を用いることで、アニオン性かつ非環式、さらには“裸“という極めて不安定なアルミニル錯体の合成が達成された。このアルミニル錯体は、金属中心でベンゼンと可逆的に[4+1]環化付加反応するなど特異な反応性をもつ。

の非環式アルミニル錯体

特殊な電子構造を作り込んだ典型元素を用いて、低分子を活性化させるのは魅力的な試みである[1]。中でも、一見変わった電子構造をもつアニオン性アルミニル種[AlX2]は、高い求核性とアルミニウムが本来もつ求電子性から、炭化水素および水素、二酸化炭素などを活性化できる高い反応性を有する(図1A, I and II)[2]。これら[AlX2]はキレート配位子による環式錯体であるが、非環式アニオン性アルミニル錯体も合成されている(図1A, III)[3]。非環式錯体は、環式錯体よりも柔軟性が高く、配位挟角のとりうる角度範囲が広い。そのため、中心金属の軌道の混成状態に対する影響が大きく、非環式錯体の方がより高い反応性を獲得できる可能性がある。しかし、この非環式アルミニル錯体IIIはカリウムカチオンとの相互作用による安定化を受けている。

一方、以前著者らは新規N-ヘテロ環ボリロキシ(NHBO)配位子を開発した(図1B)[4]。NHBO配位子は、酸素原子の高い電気陰性度による中心元素の非共有電子対の安定化およびDipp(2,6-diisopropylphenyl)基の嵩高さによる中心元素の保護が可能である。実際、NHBO配位子により14族元素中心とする非環式二配位ジオキシカルベンの合成が達成されている。

今回著者らは、アニオン性非環式アルミニル錯体をカウンターカチオンによる安定化のない“裸”の錯体とすることで、より高い反応性の発現を目指した。極めて反応性の高い(不安定な)錯体を合成するために、著者らの開発したNHBO配位子を用い、かつ、カリウムカチオンを[2.2.2]クリプタンドで捕捉することで、のアニオン性非環式アルミニル錯体の合成を達成した(図1C)。この錯体はアルミニウム中心でベンゼンと可逆的な[4+1]環化付加反応することを明らかにした。

図1. (A) アルミニル化合物 (B) NHBO配位子および非環式錯体形成 (C) NHBO配位子を用いた“裸”の非環式アルミニル錯体

 

“Reversible [4 + 1] Cycloaddition of Arenes by a “Naked” Acyclic Aluminyl Compound”
Sarkar, D.; Vasko, P.; Roper, A. F.; Crumpton, A. E.; Roy, M. M. D.; Griffin, L. P.; Bogle, C.; Aldridge, S. J. Am. Chem. Soc.2024, 146, 11792–11800. DOI: 10.1021/jacs.4c00376

論文著者の紹介

研究者:Debotra Sarkar

研究者の経歴:

2015          M.Sc., Indian Institute of Technology, Delhi, India
2020          Ph.D., Technical University Munich, Germany (Prof. Shigeyoshi Inoue)
2020–2021                  Postdoc, Karlsruhe Institute of Technology (KIT), Germany (Prof. Peter Roesky and Prof. Vadapalli Chandrasekhar)
2022–                             Postdoc, University of Oxford, UK (Prof. Simon Aldridge)

研究内容:低原子価錯体合成、NHC配位子合成

研究者:Simon Aldridge

研究者の経歴:

1992 B.S., Jesus College, University of Oxford, UK
1996 Ph.D., University of Oxford, UK (Prof. Tony Downs)
1996–1997 Postdoc, University of Notre Dame, USA (Prof. Thomas Fehlner)
1997–1998 Postdoc, Imperial College London, UK (Prof. D. Michael P. Mingos)
1998–2004                  Lecturer, School of Chemistry, Cardiff University, UK
2004–2006 Senior lecturer, Cardiff University, UK
2007–2010                  Senior lecturer, University of Oxford, UK
2010–                           Professor, University of Oxford, UK

研究内容:13および14族原子を配位原子とする新規配位子の設計と合成、FLPによる低分子活性化

論文の概要

“裸“のアニオン性非環式アルミニル錯体の合成について述べる(図2A)。まず、[Cp*Al]4 (Cp* = C5Me5)をベンゼン中でNHBO配位子K[OB(NDippCH)2](1)と配位子交換させ、ビスボリロキシアルミニル錯体2を高収率で得た[5]。X線結晶構造解析から、2におけるカリウムカチオンはNHBO配位子の2つの酸素原子と相互作用していることが確かめられた。次に、2に[2.2.2]クリプタンドを作用させるとカリウムカチオンが捕捉されて、“裸“の非環式アルミニル錯体3の合成を達成した。錯体2はベンゼン中安定であるのに対し、3はアルミニウム中心でベンゼンと[4+1]環化付加反応し付加体4となる。また、付加体4を真空引きするとベンゼンが脱離し、3が再生する稀な現象も見いだした。

錯体3の高い反応性を明らかにすべく、X線構造解析とDFT計算を行った。錯体2は、酸素原子とアルミニウムに加えてカリウムカチオンで四員環を形成しており、∠O–Al–Oは92.3°であった(図2B上)。一方、錯体3はカリウムカチオンとの相互作用をもたないため、∠O–Al–Oが100.0°であった。またDFT計算から、錯体23で反応性の起源となるアルミニウム上の非共有電子対が収納されているσ軌道、および、それに直交するpπ軌道のエネルギー準位を比較した(図2B下)。σ軌道のエネルギー準位は、2(–3.94 eV)よりも3(–2.77 eV)の方が高い。これはカリウムカチオンによる安定化効果の消失と配位挟角の増大による軌道の再混成によるものと考えられる。pπ軌道のエネルギー準位においても、2(+0.40 eV)よりも3(+1.52 eV)の方が高い。これは、カリウムカチオンの除去により、酸素原子からのπ供与が強くなり、反結合性のpπ軌道のエネルギー準位が上昇したと考えられる。酸素原子からのπ供与の増大は、酸素-アルミニウム結合の短縮からも確かめられた。これらのエネルギー準位の上昇が、錯体3に高い反応性をもたらしたと言える。さらに著者らは、反応経路のDFT計算から、カリウムカチオンによる安定化をもたない3のみ[4+1]環化付加反応することを裏付けた(詳細は論文参照)。また、ベンゼン以外の基質との反応性も確認しており、アントラセンとは[4+1]環化付加反応において、23は位置選択性が異なることも明らかにしている。

図2. (A) “裸“の非環式アルミニル錯体の合成および反応性 (B) X線構造およびエネルギー準位

以上、NHBO配位子を用いた“裸“の非環式アルミニル錯体の報告であった。目を引くような著者らの錯体合成の続報に乞うご期待である。

参考文献

  1. (a) Power, P. P. Main-Group Elements as Transition Metals. Nature 2010, 463, 171–177. DOI: 1038/nature08634 (b) Weetman, C.; Inoue, S. The Road Travelled: After Main‐Group Elements as Transition Metals. ChemCatChem 2018, 10, 4213–4228. DOI: 10.1002/cctc.201800963
  2. (a) Hicks, J.; Vasko, P.; Heilmann, A.; Goicoechea, J. M.; Aldridge, S. Arene C–H Activation at Aluminium(I): meta Selectivity Driven by the Electronics of SNAr Chemistry. Angew. Chem., Int. Ed. 2020, 59, 20376–20380. DOI: 10.1002/anie.202008557 (b) Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. Reversible, Room-Temperature C–C Bond Activation of Benzene by an Isolable Metal Complex. J. Am. Chem. Soc. 2019, 141, 11000–11003. DOI: 10.1021/jacs.9b05925 (c) Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. Synthesis, Structure and Reaction Chemistry of a Nucleophilic Aluminyl Anion. Nature 2018, 557, 92–95. DOI: 10.1038/s41586-018-0037-y (d) Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. The Aluminyl Anion: A New Generation of Aluminium Nucleophile. Angew. Chem., Int. Ed. 2021, 60, 1702–1713. DOI: 10.1002/anie.202007530 (e) Coles, M. P.; Evans, M. J. The Emerging Chemistry of the Aluminyl Anion. Chem. Commun. 2023, 59, 503–519. DOI: 10.1039/D2CC05963K
  3. Jackson, R. A.; Matthews, A. J. R.; Vasko, P.; Mahon, M. F.; Hicks, J.; Liptrot, D. J. An Acyclic Aluminyl Anion. Chem. Commun. 2023, 59, 5277–5280. DOI: 10.1039/D3CC01317K
  4. Loh, Y. K.; Ying, L.; Ángeles Fuentes, M.; Do, D. C. H.; Aldridge, S. An N‐Heterocyclic Boryloxy Ligand Isoelectronic with N‐Heterocyclic Imines: Access to an Acyclic Dioxysilylene and Its Heavier Congeners. Angew. Chem., Int. Ed. 2019, 58, 4847–4851. DOI: 10.1002/anie.201812058
  5. (a) Boronski, J. T.; Thomas-Hargreaves, L. R.; Ellwanger, M. A.; Crumpton, A. E.; Hicks, J.; Bekiş, D. F.; Aldridge, S.; Buchner, M. R. Inducing Nucleophilic Reactivity at Beryllium with an Aluminyl Ligand. J. Am. Chem. Soc. 2023, 145, 4408–4413. DOI: 10.1021/jacs.3c00480 (b) Denker, L.; Trzaskowski, B.; Frank, R. “Give Me Five” – an Amino Imidazoline-2-Imine Ligand Stabilises the First Neutral Five-Membered Cyclic Triel(I) Carbenoides. Chem. Commun. 2021, 57, 2816–2819. DOI: 10.1039/D1CC00010A (c) Ganesamoorthy, C.; Loerke, S.; Gemel, C.; Jerabek, P.; Winter, M.; Frenking, G.; Fischer, R. A. Reductive Elimination: A Pathway to Low-Valent Aluminium Species. Chem. Commun. 2013, 49, 2858. DOI: 10.1039/c3cc38584a
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 再生医療ーChemical Times特集より
  2. YMC研究奨励金当選者の声
  3. クロスカップリングの研究年表
  4. “研究者”人生ゲーム
  5. カーボンナノリングのキーホルダー式固定化法の開発
  6. 【8月開催】マイクロ波化学のQ&A付きセミナー
  7. 構造式から選ぶ花粉症のOTC医薬品
  8. 水と塩とリチウム電池 ~リチウムイオン電池のはなし2にかえて~

注目情報

ピックアップ記事

  1. 総合化学大手5社の前期、4社が経常減益
  2. 抗薬物中毒活性を有するイボガイン類の生合成
  3. ベックマン転位 Beckmann Rearrangement
  4. 歯車の回転数は、当てる光次第 -触媒量のDDQ光触媒で行うベンゼンC-H結合アミノ化反応-
  5. 第122回―「分子軌道反応論の教科書を綴る」Ian Fleming教授
  6. 第85回―「オープン・サイエンス潮流の推進」Cameron Neylon教授
  7. 日本化学会 平成17年度各賞受賞者決まる
  8. 抗体-薬物複合体 Antibody-Drug Conjugate
  9. 2016年2月の注目化学書籍
  10. 3Mとはどんな会社?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP