[スポンサーリンク]

スポットライトリサーチ

ホウ素の力でイオンを見る!長波長光での観察を可能とするアニオンセンサーの開発

[スポンサーリンク]

 

第 615回のスポットライトリサーチは、大阪大学大学院 工学研究科応用化学専攻 南方研究室にご所属の 青田 奈恵 (あおた・なえ) さんにお願いしました!

南方研では “ものづくり” の基礎研究に主眼をおき、シンプル(入手容易)な原料から使える物質(分子)の新しい合成方法の開拓を目的とし、効率性、選択性、およびグリーン性を備えた方法論を重視して研究しています。

准教授 武田 洋平 先生らの研究グループでは、独自に開発したジベンゾフェナジンという骨格を活用したユニークな分子を合成し、「3色に変化する熱活性化遅延蛍光材料」など多彩な機能性材料としての応用を展開してきました。

今回、青田さんらはデンマーク工科大学のグループと共同で、架橋型トリアリールボラン化合物フェナザボリンとジベンゾフェナジンから構成されるドナー – アクセプター – ドナー型分子を合成し、非常に珍しい長波長 (レッド) シフトを示す陰イオンセンサーの創成に成功しました。長波長光 (近赤外光) は生体透過性が高いため、このような特性を持つセンサーは従来分子と異なったさまざまな応用が期待できます。

さらに研究グループは、陰イオンセンサーを利用し新しい高分子フィルムを作成しました。このフィルムは、フッ化物イオンを少量加えるだけで,蛍光発光が青色から赤色に変化します。また、加えるフッ化物イオンの量を調整することで、白色にも光ことを明らかにしました。本発見は、有害なイオンを超高感度で検出する技術や、新しいタイプの色調変調ディスプレイなどに応用できる可能性があります。

本研究成果は国際的に高く評価され、Angewandte Chemie International Edition に掲載されるとともに、阪大よりプレスリリースも行われました。

Anion-Responsive Colorimetric and Fluorometric Red-Shift in Triarylborane Derivatives: Dual Role of Phenazaborine as Lewis Acid and Electron Donor

Nae AotaRiku Nakagawa, Leonardo Evaristo de Sousa, Norimitsu TohnaiSatoshi Minakata, Piotr de Silva, Youhei Takeda

研究を現場で指揮された 武田 洋平 先生から、青田さんについてのコメントを頂戴しております!

青田さんは奈良高専から阪大へ編入後、2021 年に研究室配属されて以来、一緒に研究を進めてくれています。配属当初から、青田さんの科学に対する情熱には圧倒されています。その情熱は研究においても存分に発揮されており、緻密に研究計画を立てては実験を人一倍頑張り、ちょっとした小さな発見も逃さない、ストイックさと洞察力を兼ね備えています。たとえ目的の実験がうまくいかない場合であっても、何故か半分嬉しそうにしている時もあったり、「次はこうやったらうまくいくんじゃないですか?」と色々と提案してくれる時もあったりと、まさに研究プロセスを楽しんでいる様子は、こちら側も初心を思い出させてもらえます。そして、後輩の面倒見も非常に良いため、学生の間でも一目置かれ頼られる存在です。

本研究においては、我々のチームでは馴染みが無かったトリアリールボラン化合物の合成だけでなく、分子設計コンセプトを検証するための詳細な分光測定等も行う必要がありましたが、持ち前の緻密さ・粘り強さで試行錯誤の上、良い実験系を確立してくれました。滴定実験を来る日も来る日も納得できるまで繰り返し、その間何度もディスカッションを重ねました。青田さんの粘り強さがなければ、今回注目したフェナザボリンの持つ面白い性質を明らかにできなかったでしょう。現在、青田さんは今回の研究内容とは異なるテーマにも鋭意挑戦中です。青田さんはこの春から博士後期課程に進学し、今から将来が楽しみな研究者です。ぜひ今後の活躍に引き続き注目してください。

それでは、インタビューをお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

トリアリールボランは、三配位ホウ素中心に空の p 軌道に起因する興味深い発光特性を示す分子です。この高いルイス酸性を活用し、フッ化物イオンなどのイオン半径が小さくハードなアニオンに応答して光物性が変調するセンサー分子が数多く開発されてきました (図1)。例えば、三配位ホウ素へのアニオンの配位による p-π* 共役の切断や電荷移動の抑制を利用したものがあり、その多くはアニオンに応答して吸収や発光が短波長シフトすることでアニオンをセンシングしています。一方で、アニオンの配位によって発光波長が長波長シフトする分子は極めて限定的であり、新たなアニオン応答型分子の設計指針の開拓が望まれていました。

図1 従来のアニオンセンサー

本研究では、架橋型三配位ホウ素化合物であるフェナザボリンの両極性に注目し、電子不足な芳香族分子と組み合わせることで、従来のセンサー分子とは逆向きの波長変化(長波長シフト)を示すアニオンセンシング分子を実現しました (図2)。フェナザボリンは、ホウ素の空軌道に由来するルイス酸性と不対電子対を持つ窒素原子に由来する電子ドナー性を両立できます。このフェナザボリンを電子ドナー (D) として活用し、所属研究室で開発された電子アクセプター (A) であるジベンゾフェナジンに結合させた D-A-D 型分子を設計しました。この分子に FOHCNなどのアニオンが配位すると、吸収や発光が長波長シフトします。これは、アニオンのホウ素上への配位によりフェナザボリンの電子ドナー性が向上し、HOMO-LUMO ギャップが狭くなったことや励起状態の電荷移動性が向上したことによります。また、電子求引性の高いジベンゾフェナジンの誘起効果によってフェナザボリンのルイス酸性度が向上し、フッ化物イオンとの結合定数が 10 倍に向上することも判明しました。

図2  本研究で開発したアニオンセンサー

今回得られた知見を発展させて水溶性や特定のイオンへの選択性・結合能を向上できれば、生体透過性の高い近赤外光を利用した生体内アニオンの検出技術への応用が期待できます。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

工夫した点は、フェナザボリンのホウ素上に立体障害の異なるアリール基を導入した 2 つの D-A-D 型分子を設計して、その光物性を比較したところです。アリール基をメシチル基からトリイソプロピルフェニル基に変えても、HOMO-LUMO のエネルギー準位や基本的な光物性はほとんど変化しないのに対し、フッ化物イオンとの結合定数は 2 オーダー低下しました。電子的要因ではなく立体的要因に起因しており、フッ化物イオンがホウ素原子に配位しているという証拠の一つにもなります。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

合成した分子に対するフッ化物イオンの結合定数を算出するために、滴定実験を行ったのですが、水の影響を受けやすく、再現良くデータがとれないという問題に悩まされました。当初は 1H NMR でのボランとボラートのシグナルの積分比から結合定数算出を試みていました。しかし、結合定数の小さい分子においては TBAF (THF 溶液) の添加量が多く必要であるため、化合物のシグナルの相対的な強度が小さくなって埋もれてしまったり、重溶媒の比率が低くなって測定できなかったりしました。最終的には、吸収スペクトル測定によって吸光度変化を追跡する手法に変更し、結合定数を再現よく見積もることに成功しました。この際も、平衡に達するまでの時間を調査し、滴下によってボランの濃度が変化しないようにボランと TBAF を予め混合した溶液を滴下するなど、ディスカッションと予備実験を繰り返して、再現よくデータを取る手法を模索しました。

Q4. 将来は化学とどう関わっていきたいですか?

やはり、新奇化合物の合成を達成した際や自身の研究が論文として形になった際は高揚感を感じますし、将来的には社会で役に立つ分子・材料を創製する研究者になりたいと思っています。自身の現在の研究は可視光領域に吸収・発光を持つ分子をターゲットにしていて、目で見て分かりやすいということもありますが、五感での観察を大切に、美しい、面白いと思える研究を進めていきたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします!

ここまで閲覧していただき、ありがとうございます。Chem-Station は奈良高専に在学していた頃からお世話になっているサイトで、ここで取り上げていただけることを非常に光栄に思っています。研究は思うように結果が出ないことも多いので、独りよがりにならずに人に相談することがとても大切だと思います。研究室生活では南方研究室のスタッフや学生をはじめ、多くの方々に助けられて、この論文を発表することができました。特に、どんなに夜遅くとも実験室の雰囲気を盛り上げて、ともに頑張ってくれた同期には本当に感謝しています。

最後になりましたが、本研究を進めるにあたり、終始熱くご指導を頂いた南方聖司教授、武田洋平准教授に心より感謝申し上げます。また、共同研究でご協力頂きました共著の先生方にこの場を借りてお礼申し上げます。

研究者の略歴

氏名: 青田 奈恵(あおた なえ)
所属: 大阪大学大学院 工学研究科応用化学専攻 南方研究室
研究テーマ: ジベンゾフェナジンを電子アクセプターとする発光分子の創製と応用
略歴:
2020.3                      奈良工業高等専門学校物質化学工学科 卒業
2022.3                      大阪大学工学部応用自然科学科 卒業
2024.3                      大阪大学大学院工学研究科応用化学専攻 博士前期課程 修了
2024.4–現在               同上 博士後期課程 在学中

 

青田様、武田先生、インタビューにご協力いただきありがとうございました!
それでは、次回のスポットライトリサーチもお楽しみに!

南方研 准教授 武田洋平先生の “光”機到来!Qコロキウム講演動画

関連記事

3色に変化する熱活性化遅延蛍光材料の開発 (スポットライトリサーチ)
スポットライトリサーチ まとめ【初回〜第200回まで】

関連書籍

生体ひかりイメージング 基礎と応用

生体ひかりイメージング 基礎と応用

星 詳子, 山田 幸生, 岡田 英史, 川口 拓之, 西條 芳文, 渡辺 英寿
¥59,400(as of 12/21 04:57)
Amazon product information
Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 燃えないカーテン
  2. 【11月開催】第3回 マツモトファインケミカル技術セミナー 有機…
  3. サーモサイエンティフィック「Exactive Plus」: 誰で…
  4. 日本農芸化学会創立100周年記念展に行ってみた
  5. 分子構造をモチーフにしたアクセサリーを買ってみた
  6. 無限の可能性を合成コンセプトで絞り込むーリアノドールの全合成ー
  7. 脱水素型クロスカップリング重合法の開発
  8. 男性研究者、育休を取る。

注目情報

ピックアップ記事

  1. サントリー白州蒸溜所
  2. 一重項酸素 Singlet Oxygen
  3. 環歪みを細胞取り込みに活かす
  4. ドラマチック有機合成化学: 感動の瞬間100
  5. 犬の「肥満治療薬」を認可=米食品医薬品局
  6. 旭化成 繊維事業がようやく底入れ
  7. 有機アモルファス蒸着薄膜の自発分極を自在制御することに成功!
  8. 第32回ケムステVシンポ「映える化学・魅せる化学で活躍する若手がつくばに集まる」を開催します!
  9. Dead Endを回避せよ!「全合成・極限からの一手」⑥(解答編)
  10. ライオン、フッ素の虫歯予防効果を高める新成分を発見

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP