[スポンサーリンク]

一般的な話題

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

[スポンサーリンク]

 

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分野において非常に大きな影響力をもたらしました1。現時点でもAF2を用いた研究論文は多く、AF2報告論文の引用数は20000件を超えます。今回はNature誌に、AF2の改良版であり、かつ複合体の予測を行えるAF3が報告されたので、こちらについて紹介したいと思います。

Accurate structure prediction of biomolecular interactions with AlphaFold 3
Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay Willmore, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, John M. Jumper et al., Nature 2024, under revised
DOI : 10.1038/s41586-024-07487-w

AlphaFold (AF) とは?

AFはGoogleのDeepMind社により開発された、人工知能 (AI) プログラムを用いた、アミノ酸配列からタンパク質の立体構造を予測するツールです。2020年にAF2の開発が発表され、2021年にNature誌より論文が報告されました。このAF2は精度が非常に高いことソースコードが公開されていたことにより、様々な論文でタンパク質の立体構造予測に用いられています。現時点でもNature姉妹雑誌などに、結晶構造解析をせずに論文を出すことができております。さらにAF2を利用して、AutoDock Vinaなどのリガンドとタンパク質のドッキングシミュレーションツールとの併用としても用いることができるようになりました。また現在、AlphaFold Protein Databaseには、Uniprotに登録されているタンパク質のうち、AF2で構築された2億個の立体構造が登録されています。

AF2の仕組み(参考文献1より引用)

AF2からAF3への変更点

大きな違いとしてはタンパク質とDNA、tRNAなど含むRNA、金属イオンなどの原子、小分子などとの複合体を予測できるという点、正確性の向上予想構造を出力するまでのスピードの向上などが挙げられます。今までは上述したようにAF2で構築した後に、別のツールを用いてドッキングする必用がありました。一方AF3では1つのツールで複合体を予測できる、という点が今回のAF3の大きな強みではないかと考えられます。

AF3の予測構造

実際に論文に挙がっている予測構造をお示しします。図にはタンパク質とDNAの複合体の予測構造を示しております。DNAが明後日の方向にいる様子は見られませんね。

続いては2つのタンパク質、RNA (tRNA) 、金属イオン (亜鉛2分子) の複合体です。こちらも非常に良く複合体が形成されている様子が見られると思います。

紫がRNA、シアンがタンパク質、黄色が金属イオン

 

AF3の使い方

AF3を実際に使ってみました。使い方はDeepMind社がYouTubeに挙げておられます。
まずこちらのAF3のサーバーにアクセスします。すると以下のような画面になります。このとき上のserverはまだ薄いグレーとなっております。Googleアカウントでログインするとここが黒くなり、使用することが可能となります。

使えるようになると以下の画面になります。

+Add entryを押すことで、入力するタンパク質や金属イオン、DNAなどを増やすことができます。まず論文でも採用されており、上記にも示しました2つのタンパク質、RNA (tRNA) 、金属イオン (亜鉛2分子) の複合体をエントリーした様子を示します。すると以下のような画面になります。タンパク質や核酸はそれぞれアミノ酸配列や塩基配列を入力し、金属イオンの場合はすでに登録されているイオンから選ぶ形式となっておりました。同じようにリガンドも選ぶことができましたが、今のところATPなどの生体分子しか選べないようです。

こちらで動かすと、先に示したような複合体が予想構造として出力されました。上のDownloadを押すと、PyMOLでも動かせるCIFファイルなどがダウンロードできます。

実際に使ってみた

本記事では、ケムステでも取り上げられたことのあるP450 BM3の予測構造を作ってみたいと思います。P450はヘム鉄をリガンドとして常に持つため、このヘム鉄が正常な位置に固定されているか確認してみたいと思います。
始めにserver画面のproteinにP450 BM3のアミノ酸配列を、リガンドとしてHeminを選択してみました。
実際に走らせてみたとこと、たった2分半で予測が終了してしまいました!!!X (旧Twitter) でも速いと話題になってはいましたが、この速度は驚きですね!予測構造では、それらしい位置にヘム鉄が結合しておりました。

そこでヘム鉄とP450 BM3の共結晶構造と比較してみました!するとリガンドであるヘム鉄は正常な位置に結合していることがわかりました!!タンパク質全体もRMSD値が0.628と非常に小さな値をとっており、素晴らしい予測結果を出力してくれました!

緑がAF3で構築した構造、シアンが共結晶構造解析により得られた構造。中央に存在するのがヘム鉄

今後の展望・期待

今はまだβ版であり、また論文も完全にパブリッシュされている訳ではありませんが、現時点ですでに非常に正確な予測結果出力までのスピード、そして1番の強みである複合体の予測までできるというのは、創薬に始まり様々な分野で用いられることとなるでしょう。ただ研究者の中でも話題にも挙がっていますが、留意すべき点として、あくまでも予測構造であるため、出力した結果が実際の構造と違うじゃないか!という意見は的外れな気もすると同時に、予測構造すべてを信じてしまうのも良くないと思いました。またAF2が非常に利用された部分については、ソースコードの開示が非常に貢献しておりました。実際にX (旧Twitter) では、今回の論文のReviewerが名乗り出て、AF2のソースコードの開示がどれだけ貢献したかを伝えたものの、開示には至らなかったと述べております。
まだまだこのAF3は話題の渦中ですが、ケムステでも引き続き追っていきたいと思います!!

関連記事・文献・サイト

2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予測」へ : ケムステ記事(2024/10/9)

https://ja.wikipedia.org/wiki/AlphaFold : Wikipedia
Moriwaki, Y. JSBi Bioinformatics Review2022, 3, 47-60. https://doi.org/10.11234/jsbibr.2022.3 : AF2の仕組みについての総説 (和文)
話題のAlphaFold2を使ってみた : ケムステ記事(2021/7/21)
https://blog.google/technology/ai/google-deepmind-isomorphic-alphafold-3-ai-model/ : Google DeepMind社によるAF3の説明
https://zenn.dev/tonets/articles/dd8c3855eadb2b : AF3の論文の日本語解説

参考文献

  1. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596 (7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2.

関連書籍

The Journey of Demis Hassabis: From Chess Prodigy to Deepmind Visionary

The Journey of Demis Hassabis: From Chess Prodigy to Deepmind Visionary

Johnson, Glen D.
¥2,263(as of 03/24 08:52)
Amazon product information

熊葛

投稿者の記事一覧

天然有機化合物の生合成研究を行っております。遺伝子工学から酵素工学、有機化学など、広い分野に興味を持っております。

関連記事

  1. 新規性喪失の例外規定とは?
  2. 第27回 国際複素環化学会議 (27th ISHC)
  3. 化学ゆるキャラ大集合
  4. 第3回慶應有機合成化学若手シンポジウム
  5. 研究室での英語【Part 2】
  6. 巻いている触媒を用いて環を巻く
  7. 近況報告PartI
  8. 産官学の深耕ー社会への発信+若い力への後押しー第1回CSJ化学フ…

注目情報

ピックアップ記事

  1. ノッシェル・ハウザー塩基 Knochel-Hauser Base
  2. Reaxys Ph.D Prize2014ファイナリスト45名発表!
  3. 第123回―「遺伝暗号を拡張して新しいタンパク質を作る」Nick Fisk教授
  4. 掟破り酵素の仕組みを解く
  5. 【技術系スタートアップ合同フォーラムのお知らせ】 ディープテックのリアル-業界ならでは魅力と社会課題解決への想い
  6. ゲームを研究に応用? タンパク質の構造計算ゲーム「Foldit」
  7. (-)-MTPA-Cl
  8. トリメトキシフェニルシラン:Trimethoxyphenylsilane
  9. ナノ粒子応用の要となる「オレイル型分散剤」の謎を解明-ナノ粒子の分散凝集理論の発展に貢献-
  10. トリフルオロ酢酸パラジウム(II) : Palladium(II) Trifluoroacetate

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー