[スポンサーリンク]

一般的な話題

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

[スポンサーリンク]

 

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分野において非常に大きな影響力をもたらしました1。現時点でもAF2を用いた研究論文は多く、AF2報告論文の引用数は20000件を超えます。今回はNature誌に、AF2の改良版であり、かつ複合体の予測を行えるAF3が報告されたので、こちらについて紹介したいと思います。

Accurate structure prediction of biomolecular interactions with AlphaFold 3
Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay Willmore, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, John M. Jumper et al., Nature 2024, under revised
DOI : 10.1038/s41586-024-07487-w

AlphaFold (AF) とは?

AFはGoogleのDeepMind社により開発された、人工知能 (AI) プログラムを用いた、アミノ酸配列からタンパク質の立体構造を予測するツールです。2020年にAF2の開発が発表され、2021年にNature誌より論文が報告されました。このAF2は精度が非常に高いことソースコードが公開されていたことにより、様々な論文でタンパク質の立体構造予測に用いられています。現時点でもNature姉妹雑誌などに、結晶構造解析をせずに論文を出すことができております。さらにAF2を利用して、AutoDock Vinaなどのリガンドとタンパク質のドッキングシミュレーションツールとの併用としても用いることができるようになりました。また現在、AlphaFold Protein Databaseには、Uniprotに登録されているタンパク質のうち、AF2で構築された2億個の立体構造が登録されています。

AF2の仕組み(参考文献1より引用)

AF2からAF3への変更点

大きな違いとしてはタンパク質とDNA、tRNAなど含むRNA、金属イオンなどの原子、小分子などとの複合体を予測できるという点、正確性の向上予想構造を出力するまでのスピードの向上などが挙げられます。今までは上述したようにAF2で構築した後に、別のツールを用いてドッキングする必用がありました。一方AF3では1つのツールで複合体を予測できる、という点が今回のAF3の大きな強みではないかと考えられます。

AF3の予測構造

実際に論文に挙がっている予測構造をお示しします。図にはタンパク質とDNAの複合体の予測構造を示しております。DNAが明後日の方向にいる様子は見られませんね。

続いては2つのタンパク質、RNA (tRNA) 、金属イオン (亜鉛2分子) の複合体です。こちらも非常に良く複合体が形成されている様子が見られると思います。

紫がRNA、シアンがタンパク質、黄色が金属イオン

 

AF3の使い方

AF3を実際に使ってみました。使い方はDeepMind社がYouTubeに挙げておられます。
まずこちらのAF3のサーバーにアクセスします。すると以下のような画面になります。このとき上のserverはまだ薄いグレーとなっております。Googleアカウントでログインするとここが黒くなり、使用することが可能となります。

使えるようになると以下の画面になります。

+Add entryを押すことで、入力するタンパク質や金属イオン、DNAなどを増やすことができます。まず論文でも採用されており、上記にも示しました2つのタンパク質、RNA (tRNA) 、金属イオン (亜鉛2分子) の複合体をエントリーした様子を示します。すると以下のような画面になります。タンパク質や核酸はそれぞれアミノ酸配列や塩基配列を入力し、金属イオンの場合はすでに登録されているイオンから選ぶ形式となっておりました。同じようにリガンドも選ぶことができましたが、今のところATPなどの生体分子しか選べないようです。

こちらで動かすと、先に示したような複合体が予想構造として出力されました。上のDownloadを押すと、PyMOLでも動かせるCIFファイルなどがダウンロードできます。

実際に使ってみた

本記事では、ケムステでも取り上げられたことのあるP450 BM3の予測構造を作ってみたいと思います。P450はヘム鉄をリガンドとして常に持つため、このヘム鉄が正常な位置に固定されているか確認してみたいと思います。
始めにserver画面のproteinにP450 BM3のアミノ酸配列を、リガンドとしてHeminを選択してみました。
実際に走らせてみたとこと、たった2分半で予測が終了してしまいました!!!X (旧Twitter) でも速いと話題になってはいましたが、この速度は驚きですね!予測構造では、それらしい位置にヘム鉄が結合しておりました。

そこでヘム鉄とP450 BM3の共結晶構造と比較してみました!するとリガンドであるヘム鉄は正常な位置に結合していることがわかりました!!タンパク質全体もRMSD値が0.628と非常に小さな値をとっており、素晴らしい予測結果を出力してくれました!

緑がAF3で構築した構造、シアンが共結晶構造解析により得られた構造。中央に存在するのがヘム鉄

今後の展望・期待

今はまだβ版であり、また論文も完全にパブリッシュされている訳ではありませんが、現時点ですでに非常に正確な予測結果出力までのスピード、そして1番の強みである複合体の予測までできるというのは、創薬に始まり様々な分野で用いられることとなるでしょう。ただ研究者の中でも話題にも挙がっていますが、留意すべき点として、あくまでも予測構造であるため、出力した結果が実際の構造と違うじゃないか!という意見は的外れな気もすると同時に、予測構造すべてを信じてしまうのも良くないと思いました。またAF2が非常に利用された部分については、ソースコードの開示が非常に貢献しておりました。実際にX (旧Twitter) では、今回の論文のReviewerが名乗り出て、AF2のソースコードの開示がどれだけ貢献したかを伝えたものの、開示には至らなかったと述べております。
まだまだこのAF3は話題の渦中ですが、ケムステでも引き続き追っていきたいと思います!!

関連記事・文献・サイト

2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予測」へ : ケムステ記事(2024/10/9)

https://ja.wikipedia.org/wiki/AlphaFold : Wikipedia
Moriwaki, Y. JSBi Bioinformatics Review2022, 3, 47-60. https://doi.org/10.11234/jsbibr.2022.3 : AF2の仕組みについての総説 (和文)
話題のAlphaFold2を使ってみた : ケムステ記事(2021/7/21)
https://blog.google/technology/ai/google-deepmind-isomorphic-alphafold-3-ai-model/ : Google DeepMind社によるAF3の説明
https://zenn.dev/tonets/articles/dd8c3855eadb2b : AF3の論文の日本語解説

参考文献

  1. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596 (7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2.

関連書籍

The Journey of Demis Hassabis: From Chess Prodigy to Deepmind Visionary

The Journey of Demis Hassabis: From Chess Prodigy to Deepmind Visionary

Johnson, Glen D.
¥2,263(as of 12/21 12:50)
Amazon product information

熊葛

投稿者の記事一覧

天然有機化合物の生合成研究を行っております。遺伝子工学から酵素工学、有機化学など、広い分野に興味を持っております。

関連記事

  1. 速報・常温常圧反応によるアンモニア合成の実現について
  2. 2015年化学生物総合管理学会春季討論集会
  3. アイディア創出のインセンティブ~KAKENデータベースの利用法
  4. 2つの結合回転を熱と光によって操る、ベンズアミド構造の新たな性質…
  5. 不斉をあざ(Aza)やかに(Ni)制御!Aza-Heck環化/還…
  6. ピリジン-ホウ素ラジカルの合成的応用
  7. エステルをアルデヒドに変換する新手法
  8. 海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~…

注目情報

ピックアップ記事

  1. 共有結合性リガンドを有するタンパク質の網羅的探索法
  2. セス・B・ハーゾン Seth B. Herzon
  3. 幾何学の定理を活用したものづくり
  4. 化学研究ライフハック:縦置きマルチディスプレイに挑戦!
  5. 第95回―「生物学・材料化学の問題を解決する化学ツールの開発」Ivan Dmochowski教授
  6. 炭素繊維は鉄とアルミに勝るか? 1
  7. 銅触媒によるアニリン類からの直接的芳香族アゾ化合物生成反応
  8. 有機化学を俯瞰する -有機化学の誕生から21世紀まで–【後編】
  9. ワムシが出す物質でスタンする住血吸虫のはなし
  10. 続・日本発化学ジャーナルの行く末は?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP