[スポンサーリンク]

一般的な話題

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

[スポンサーリンク]

 

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分野において非常に大きな影響力をもたらしました1。現時点でもAF2を用いた研究論文は多く、AF2報告論文の引用数は20000件を超えます。今回はNature誌に、AF2の改良版であり、かつ複合体の予測を行えるAF3が報告されたので、こちらについて紹介したいと思います。

Accurate structure prediction of biomolecular interactions with AlphaFold 3
Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay Willmore, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, John M. Jumper et al., Nature 2024, under revised
DOI : 10.1038/s41586-024-07487-w

AlphaFold (AF) とは?

AFはGoogleのDeepMind社により開発された、人工知能 (AI) プログラムを用いた、アミノ酸配列からタンパク質の立体構造を予測するツールです。2020年にAF2の開発が発表され、2021年にNature誌より論文が報告されました。このAF2は精度が非常に高いことソースコードが公開されていたことにより、様々な論文でタンパク質の立体構造予測に用いられています。現時点でもNature姉妹雑誌などに、結晶構造解析をせずに論文を出すことができております。さらにAF2を利用して、AutoDock Vinaなどのリガンドとタンパク質のドッキングシミュレーションツールとの併用としても用いることができるようになりました。また現在、AlphaFold Protein Databaseには、Uniprotに登録されているタンパク質のうち、AF2で構築された2億個の立体構造が登録されています。

AF2の仕組み(参考文献1より引用)

AF2からAF3への変更点

大きな違いとしてはタンパク質とDNA、tRNAなど含むRNA、金属イオンなどの原子、小分子などとの複合体を予測できるという点、正確性の向上予想構造を出力するまでのスピードの向上などが挙げられます。今までは上述したようにAF2で構築した後に、別のツールを用いてドッキングする必用がありました。一方AF3では1つのツールで複合体を予測できる、という点が今回のAF3の大きな強みではないかと考えられます。

AF3の予測構造

実際に論文に挙がっている予測構造をお示しします。図にはタンパク質とDNAの複合体の予測構造を示しております。DNAが明後日の方向にいる様子は見られませんね。

続いては2つのタンパク質、RNA (tRNA) 、金属イオン (亜鉛2分子) の複合体です。こちらも非常に良く複合体が形成されている様子が見られると思います。

紫がRNA、シアンがタンパク質、黄色が金属イオン

 

AF3の使い方

AF3を実際に使ってみました。使い方はDeepMind社がYouTubeに挙げておられます。
まずこちらのAF3のサーバーにアクセスします。すると以下のような画面になります。このとき上のserverはまだ薄いグレーとなっております。Googleアカウントでログインするとここが黒くなり、使用することが可能となります。

使えるようになると以下の画面になります。

+Add entryを押すことで、入力するタンパク質や金属イオン、DNAなどを増やすことができます。まず論文でも採用されており、上記にも示しました2つのタンパク質、RNA (tRNA) 、金属イオン (亜鉛2分子) の複合体をエントリーした様子を示します。すると以下のような画面になります。タンパク質や核酸はそれぞれアミノ酸配列や塩基配列を入力し、金属イオンの場合はすでに登録されているイオンから選ぶ形式となっておりました。同じようにリガンドも選ぶことができましたが、今のところATPなどの生体分子しか選べないようです。

こちらで動かすと、先に示したような複合体が予想構造として出力されました。上のDownloadを押すと、PyMOLでも動かせるCIFファイルなどがダウンロードできます。

実際に使ってみた

本記事では、ケムステでも取り上げられたことのあるP450 BM3の予測構造を作ってみたいと思います。P450はヘム鉄をリガンドとして常に持つため、このヘム鉄が正常な位置に固定されているか確認してみたいと思います。
始めにserver画面のproteinにP450 BM3のアミノ酸配列を、リガンドとしてHeminを選択してみました。
実際に走らせてみたとこと、たった2分半で予測が終了してしまいました!!!X (旧Twitter) でも速いと話題になってはいましたが、この速度は驚きですね!予測構造では、それらしい位置にヘム鉄が結合しておりました。

そこでヘム鉄とP450 BM3の共結晶構造と比較してみました!するとリガンドであるヘム鉄は正常な位置に結合していることがわかりました!!タンパク質全体もRMSD値が0.628と非常に小さな値をとっており、素晴らしい予測結果を出力してくれました!

緑がAF3で構築した構造、シアンが共結晶構造解析により得られた構造。中央に存在するのがヘム鉄

今後の展望・期待

今はまだβ版であり、また論文も完全にパブリッシュされている訳ではありませんが、現時点ですでに非常に正確な予測結果出力までのスピード、そして1番の強みである複合体の予測までできるというのは、創薬に始まり様々な分野で用いられることとなるでしょう。ただ研究者の中でも話題にも挙がっていますが、留意すべき点として、あくまでも予測構造であるため、出力した結果が実際の構造と違うじゃないか!という意見は的外れな気もすると同時に、予測構造すべてを信じてしまうのも良くないと思いました。またAF2が非常に利用された部分については、ソースコードの開示が非常に貢献しておりました。実際にX (旧Twitter) では、今回の論文のReviewerが名乗り出て、AF2のソースコードの開示がどれだけ貢献したかを伝えたものの、開示には至らなかったと述べております。
まだまだこのAF3は話題の渦中ですが、ケムステでも引き続き追っていきたいと思います!!

関連記事・文献・サイト

2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予測」へ : ケムステ記事(2024/10/9)

https://ja.wikipedia.org/wiki/AlphaFold : Wikipedia
Moriwaki, Y. JSBi Bioinformatics Review2022, 3, 47-60. https://doi.org/10.11234/jsbibr.2022.3 : AF2の仕組みについての総説 (和文)
話題のAlphaFold2を使ってみた : ケムステ記事(2021/7/21)
https://blog.google/technology/ai/google-deepmind-isomorphic-alphafold-3-ai-model/ : Google DeepMind社によるAF3の説明
https://zenn.dev/tonets/articles/dd8c3855eadb2b : AF3の論文の日本語解説

参考文献

  1. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596 (7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2.

関連書籍

The Journey of Demis Hassabis: From Chess Prodigy to Deepmind Visionary

The Journey of Demis Hassabis: From Chess Prodigy to Deepmind Visionary

Johnson, Glen D.
¥2,263(as of 11/21 09:10)
Amazon product information

熊葛

投稿者の記事一覧

天然有機化合物の生合成研究を行っております。遺伝子工学から酵素工学、有機化学など、広い分野に興味を持っております。

関連記事

  1. チオール架橋法による位置選択的三環性ペプチド合成
  2. 日本にあってアメリカにないガラス器具
  3. 男性研究者、育休後の生活を語る。
  4. 超大画面ディスプレイ(シプラ)実現へ
  5. 3Mとはどんな会社?
  6. リンダウ会議に行ってきた③
  7. 遷移金属触媒がいらないC–Nクロスカップリング反応
  8. 化学者のためのエレクトロニクス講座~無電解めっきの原理編~

注目情報

ピックアップ記事

  1. 転職でチャンスを掴める人、掴めない人の違い
  2. 生体分子と疾患のビッグデータから治療標的分子を高精度で予測するAIを開発
  3. サイエンスアゴラの魅力を聞くー「生活環境化学の部屋」本間先生
  4. 2021年ノーベル化学賞は「不斉有機触媒の開発」に!
  5. 化学者の卵に就職活動到来
  6. Carl Boschの人生 その1
  7. 会社説明会で鋭い質問をしよう
  8. 無限の可能性を秘めたポリマー
  9. AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術
  10. 一人二役のフタルイミドが位置までも制御する

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP