[スポンサーリンク]

化学者のつぶやき

Ti触媒、結合切って繋げて二刀流!!アルコールの脱ラセミ化反応

[スポンサーリンク]

LMCTを介したTi触媒によるアルコールの光駆動型脱ラセミ化反応が報告された。単一不斉配位子を用いた二度の不斉誘導により高いエナンチオ選択性が発現する。

光駆動型触媒的脱ラセミ化反応

脱ラセミ化反応は、ラセミ体を単一のエナンチオマーに変換できる有用な不斉合成反応である。動的速度論光学分割とは異なり、原料と生成物の構造は変化しない。脱ラセミ化反応では、生成系のエントロピーが減少する点や、熱平衡による再ラセミ化が潜在的な課題である[1]。これらの課題を、光を利用して克服した初の例が、Bachらによる不斉チオキサントン触媒を用いたアレンの脱ラセミ化である(図 1Aa)[2]。チオキサントン触媒は、立体反発のより小さいエナンチオマーと優先的に水素結合を形成する。その後、相互作用したアレンと励起したチオキサントン触媒との間で三重項エネルギー移動が起こり、異性化する。本反応では、非熱平衡過程の三重項エネルギー移動を経由することで課題であった再ラセミ化を抑制した。この報告の後、Knowlesらはウレアの可視光駆動型脱ラセミ化を報告した(図 1Ab)[3]。励起されたIr触媒によりウレアが酸化された後、キラルブレンステッド塩基によるプロトン移動(PT)、キラルペプチドチオールによるHATを経て脱ラセミ化する。本反応では、二つの不斉触媒による二度の不斉誘導により、高いエナンチオ選択性を実現した。

本論文著者のZuoらは近年、Ce光触媒に着目したアルコールの変換反応を複数報告している(図1B)[4]。これらの反応ではCe錯体のLMCT(ligand to metal charge transfer)を経てアルコールからアルコキシラジカルが生成する。その後β-開裂により生じたアルキルラジカルがラジカル捕捉剤と反応する。

今回、著者らはTi触媒によるアルコキシラジカル生成を起点としたアルコールの脱ラセミ化反応を報告した(図1C)。単一の不斉Ti触媒が、アルコールのβ-開裂と再環化過程における二度の不斉誘導を実現し、高い光学純度でアルコールが得られる。

図1. (A) 光照射を駆動力とした脱ラセミ化反応 (B) 先行研究 (C) 本研究

 

“Multiplicative Enhancement of Stereoenrichment by a Single Catalyst for Deracemization of Alcohols”
Wen, L.; Ding, J.; Duan, L.; Wang, S.; An, Q.; Wang, H.; Zuo, Z.Science2023, 382, 458–464.
DOI: 10.1126/science.adj0040

論文著者の紹介

研究者: Zhiwei Zuo (左智伟)

研究者の経歴:

2007                                                    B.S., Nanjing University, China
2012                       Ph.D., Shanghai Institute of Organic Chemistry (SIOC), China (Prof. Dawei Ma)
2013–2015          Postdoc, Princeton University, USA (Prof. David W. C. MacMillan)
2015–2020          Assistant Professor, Shanghai Tech University, China
2020–                                                  Professor, Shanghai Institute of Organic Chemistry (SIOC), China

研究内容:Ce光触媒を利用したアルコキシラジカル生成法の開発

論文の概要

ヘプタン中、触媒量のTiCl4とキラルリン酸L、Na2CO3存在下、光照射(395 nm)することでラセミ体である環状アルコール1の脱ラセミ化反応が進行し、一方のエナンチオマーが選択的に得られることを見出した(図2A)。本反応は、β位にアリール基をもつ様々な環員数の2級アルコール(1a1c)に加え、α位にメチル基をもつ3級アルコール(1d)に適用できた。また、ビスオキサゾリンL4を不斉配位子に用いることで、非環状アミノアルコール2も利用可能であった。

著者らは、反応機構解明実験として、部分的に重水素化したシクロペンタノール3を脱ラセミ化した(図2B)。その結果、3の重水素化率を維持した状態で、1aと同等の立体選択性を示したことから、脱ラセミ化は水素原子移動(HAT)や段階的な酸化還元過程を経由しないことが明らかとなった。

彼らは高エナンチオ選択性を実現する不斉発現メカニズムも調査した(図 2c)。はじめにC–C結合形成過程におけるエナンチオ選択性を確認した。syn体(±)-2の脱ラセミ化反応では、反応初期に生成するanti体2の鏡像体比はほぼ一定であり(er = 75:25)、anti体は結合開裂に関与しないことが示唆された。すなわち、結合形成過程のエナンチオ選択性はer = 75:25と見積もられた。また結合開裂が進行しない暗条件下、アルデヒド4とイミン5を反応させるとanti体(+)-2が鏡像体比er = 77:23 (kR/kS比3.3:1)で生成した。次に、C–C結合開裂における立体選択性を確認した。2とラジカル捕捉剤6を光照射条件下で反応させた結果、(S)-エナンチオマーが優先的に消費されることが明らかになった(k–S/k–R比8.1:1)。これら二つの不斉誘導過程から算出される鏡像体比(er = kRk–S/kSk–R)はer = 96:4となり、本脱ラセミ化反応における2aの不斉収率(er = 97:3)と一致した。以上より、C–C結合切断/形成の各過程における不斉誘導は中程度であるものの、これらを組み合わせることで高いエナンチオ選択性を達成したことが示された。他にも、Ti(III)の生成やβ-開裂反応の関与、プロキラルなラジカル中間体を経由することが実験的に示された(論文参照)。

図2. (A) 基質適用範囲 (B) 重水素ラベル実験 (C) 不斉誘導の比率の調査実験

今回、不斉チタン触媒を用いたアルコールの脱ラセミ化が報告された。単一触媒による2つの不斉誘導で高いエナンチオ選択性を達成する本手法のコンセプトを応用した、新たな不斉触媒反応の開発が期待される。

参考文献

  1. Huang, M.; Pan, T.; Jiang, X.; Luo, S. Catalytic Deracemization Reactions. J. Am. Chem. Soc. 2023, 14, 10917–1 DOI: 10.1021/jacs.3c02622
  2. Hölzl-Hobmeier, A.; Bauer, A.; Silva, A. V.; Huber, S. M.; Bannwarth, C.; Bach, T. Catalytic Deracemization of Chiral Allenes by Sensitized Excitation with Visible Light. Nature 2018, 564, 240–243. DOI: 1038/s41586-018-0755-1
  3. Shin, N. Y.; Ryss, J. M.; Zhang, X.; Miller, S. J.; Knowles, R. R. Light-Driven Deracemization Enabled by Excited-State Electron Transfer. Science 2019, 366, 364–369. DOI: 1126/science.aay2204
  4. (a) Guo, J.; Hu, A.; Chen, Y.; Sun, J.; Tang, H.; Zuo, Z. Photocatalytic C–C Bond Cleavage and Amination of Cycloalkanols by Cerium(III) Chloride Complex. Angew. Chem., Int. Ed. 2016, 55, 15319–15322. DOI: 1002/anie.201609035 (b) Hu, A.; Chen, Y.; Guo, J.-J.; Yu, N.; An, Q.; Zuo, Z. Cerium-Catalyzed Formal Cycloaddition of Cycloalkanols with Alkenes through Dual Photoexcitation. J. Am. Chem. Soc. 2018, 140, 13580–13585. DOI: 10.1021/jacs.8b08781 (c) Zhang, K.; Chang, L.; An, Q.; Wang, X.; Zuo, Z. Dehydroxymethylation of Alcohols Enabled by Cerium Photocatalysis. J. Am. Chem. Soc. 2019, 141, 10556–10564. DOI: 10.1021/jacs.9b05932 (d) Chen, Y.; Wang, X.; He, X.; An, Q.; Zuo, Z. Photocatalytic Dehydroxymethylative Arylation by Synergistic Cerium and Nickel Catalysis. J. Am. Chem. Soc. 2021, 143, 4896–4902. DOI: 10.1021/jacs.1c00618
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. アジサイの青色色素錯体をガク片の中に直接検出!
  2. 「大津会議」参加体験レポート
  3. 投票!2014年ノーベル化学賞は誰の手に??
  4. 有合化若手セミナーに行ってきました
  5. 2007年度ノーベル化学賞を予想!(4)
  6. 東京化成工業がケムステVシンポに協賛しました
  7. 無保護カルボン酸のラジカル機構による触媒的酸化反応の開発
  8. 最期の病:悪液質

注目情報

ピックアップ記事

  1. 特許の関係を「地図」に ベンチャー企業が作成
  2. 含フッ素遷移金属エノラート種の合成と応用
  3. 化学五輪、「金」の高3連続出場 7月に東京開催
  4. キャピラリー電気泳動の基礎知識
  5. 創造化学研究所、環境負荷の少ない実証ベンチプラント稼動へ
  6. 研究者・開発者に必要なマーケティング技術と活用方法【終了】
  7. 第49回―「超分子の電気化学的挙動を研究する」Angel Kaifer教授
  8. NMRの基礎知識【測定・解析編】
  9. 混合原子価による芳香族性
  10. 第62回「分子設計ペプチドで生命機能を制御する!!」―松浦和則 教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

配位子が酸化??触媒サイクルに参加!!

C(sp3)–Hヒドロキシ化に効果的に働く、ヘテロレプティックなルテニウム(II)触媒が報告された。…

精密質量計算の盲点:不正確なデータ提出を防ぐために

ご存じの通り、近年では化学の世界でもデータ駆動アプローチが重要視されています。高精度質量分析(HRM…

第71回「分子制御で楽しく固体化学を開拓する」林正太郎教授

第71回目の研究者インタビューです! 今回は第51回ケムステVシンポ「光化学最前線2025」の講演者…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP