[スポンサーリンク]

化学者のつぶやき

Ti触媒、結合切って繋げて二刀流!!アルコールの脱ラセミ化反応

[スポンサーリンク]

LMCTを介したTi触媒によるアルコールの光駆動型脱ラセミ化反応が報告された。単一不斉配位子を用いた二度の不斉誘導により高いエナンチオ選択性が発現する。

光駆動型触媒的脱ラセミ化反応

脱ラセミ化反応は、ラセミ体を単一のエナンチオマーに変換できる有用な不斉合成反応である。動的速度論光学分割とは異なり、原料と生成物の構造は変化しない。脱ラセミ化反応では、生成系のエントロピーが減少する点や、熱平衡による再ラセミ化が潜在的な課題である[1]。これらの課題を、光を利用して克服した初の例が、Bachらによる不斉チオキサントン触媒を用いたアレンの脱ラセミ化である(図 1Aa)[2]。チオキサントン触媒は、立体反発のより小さいエナンチオマーと優先的に水素結合を形成する。その後、相互作用したアレンと励起したチオキサントン触媒との間で三重項エネルギー移動が起こり、異性化する。本反応では、非熱平衡過程の三重項エネルギー移動を経由することで課題であった再ラセミ化を抑制した。この報告の後、Knowlesらはウレアの可視光駆動型脱ラセミ化を報告した(図 1Ab)[3]。励起されたIr触媒によりウレアが酸化された後、キラルブレンステッド塩基によるプロトン移動(PT)、キラルペプチドチオールによるHATを経て脱ラセミ化する。本反応では、二つの不斉触媒による二度の不斉誘導により、高いエナンチオ選択性を実現した。

本論文著者のZuoらは近年、Ce光触媒に着目したアルコールの変換反応を複数報告している(図1B)[4]。これらの反応ではCe錯体のLMCT(ligand to metal charge transfer)を経てアルコールからアルコキシラジカルが生成する。その後β-開裂により生じたアルキルラジカルがラジカル捕捉剤と反応する。

今回、著者らはTi触媒によるアルコキシラジカル生成を起点としたアルコールの脱ラセミ化反応を報告した(図1C)。単一の不斉Ti触媒が、アルコールのβ-開裂と再環化過程における二度の不斉誘導を実現し、高い光学純度でアルコールが得られる。

図1. (A) 光照射を駆動力とした脱ラセミ化反応 (B) 先行研究 (C) 本研究

 

“Multiplicative Enhancement of Stereoenrichment by a Single Catalyst for Deracemization of Alcohols”
Wen, L.; Ding, J.; Duan, L.; Wang, S.; An, Q.; Wang, H.; Zuo, Z.Science2023, 382, 458–464.
DOI: 10.1126/science.adj0040

論文著者の紹介

研究者: Zhiwei Zuo (左智伟)

研究者の経歴:

2007                                                    B.S., Nanjing University, China
2012                       Ph.D., Shanghai Institute of Organic Chemistry (SIOC), China (Prof. Dawei Ma)
2013–2015          Postdoc, Princeton University, USA (Prof. David W. C. MacMillan)
2015–2020          Assistant Professor, Shanghai Tech University, China
2020–                                                  Professor, Shanghai Institute of Organic Chemistry (SIOC), China

研究内容:Ce光触媒を利用したアルコキシラジカル生成法の開発

論文の概要

ヘプタン中、触媒量のTiCl4とキラルリン酸L、Na2CO3存在下、光照射(395 nm)することでラセミ体である環状アルコール1の脱ラセミ化反応が進行し、一方のエナンチオマーが選択的に得られることを見出した(図2A)。本反応は、β位にアリール基をもつ様々な環員数の2級アルコール(1a1c)に加え、α位にメチル基をもつ3級アルコール(1d)に適用できた。また、ビスオキサゾリンL4を不斉配位子に用いることで、非環状アミノアルコール2も利用可能であった。

著者らは、反応機構解明実験として、部分的に重水素化したシクロペンタノール3を脱ラセミ化した(図2B)。その結果、3の重水素化率を維持した状態で、1aと同等の立体選択性を示したことから、脱ラセミ化は水素原子移動(HAT)や段階的な酸化還元過程を経由しないことが明らかとなった。

彼らは高エナンチオ選択性を実現する不斉発現メカニズムも調査した(図 2c)。はじめにC–C結合形成過程におけるエナンチオ選択性を確認した。syn体(±)-2の脱ラセミ化反応では、反応初期に生成するanti体2の鏡像体比はほぼ一定であり(er = 75:25)、anti体は結合開裂に関与しないことが示唆された。すなわち、結合形成過程のエナンチオ選択性はer = 75:25と見積もられた。また結合開裂が進行しない暗条件下、アルデヒド4とイミン5を反応させるとanti体(+)-2が鏡像体比er = 77:23 (kR/kS比3.3:1)で生成した。次に、C–C結合開裂における立体選択性を確認した。2とラジカル捕捉剤6を光照射条件下で反応させた結果、(S)-エナンチオマーが優先的に消費されることが明らかになった(k–S/k–R比8.1:1)。これら二つの不斉誘導過程から算出される鏡像体比(er = kRk–S/kSk–R)はer = 96:4となり、本脱ラセミ化反応における2aの不斉収率(er = 97:3)と一致した。以上より、C–C結合切断/形成の各過程における不斉誘導は中程度であるものの、これらを組み合わせることで高いエナンチオ選択性を達成したことが示された。他にも、Ti(III)の生成やβ-開裂反応の関与、プロキラルなラジカル中間体を経由することが実験的に示された(論文参照)。

図2. (A) 基質適用範囲 (B) 重水素ラベル実験 (C) 不斉誘導の比率の調査実験

今回、不斉チタン触媒を用いたアルコールの脱ラセミ化が報告された。単一触媒による2つの不斉誘導で高いエナンチオ選択性を達成する本手法のコンセプトを応用した、新たな不斉触媒反応の開発が期待される。

参考文献

  1. Huang, M.; Pan, T.; Jiang, X.; Luo, S. Catalytic Deracemization Reactions. J. Am. Chem. Soc. 2023, 14, 10917–1 DOI: 10.1021/jacs.3c02622
  2. Hölzl-Hobmeier, A.; Bauer, A.; Silva, A. V.; Huber, S. M.; Bannwarth, C.; Bach, T. Catalytic Deracemization of Chiral Allenes by Sensitized Excitation with Visible Light. Nature 2018, 564, 240–243. DOI: 1038/s41586-018-0755-1
  3. Shin, N. Y.; Ryss, J. M.; Zhang, X.; Miller, S. J.; Knowles, R. R. Light-Driven Deracemization Enabled by Excited-State Electron Transfer. Science 2019, 366, 364–369. DOI: 1126/science.aay2204
  4. (a) Guo, J.; Hu, A.; Chen, Y.; Sun, J.; Tang, H.; Zuo, Z. Photocatalytic C–C Bond Cleavage and Amination of Cycloalkanols by Cerium(III) Chloride Complex. Angew. Chem., Int. Ed. 2016, 55, 15319–15322. DOI: 1002/anie.201609035 (b) Hu, A.; Chen, Y.; Guo, J.-J.; Yu, N.; An, Q.; Zuo, Z. Cerium-Catalyzed Formal Cycloaddition of Cycloalkanols with Alkenes through Dual Photoexcitation. J. Am. Chem. Soc. 2018, 140, 13580–13585. DOI: 10.1021/jacs.8b08781 (c) Zhang, K.; Chang, L.; An, Q.; Wang, X.; Zuo, Z. Dehydroxymethylation of Alcohols Enabled by Cerium Photocatalysis. J. Am. Chem. Soc. 2019, 141, 10556–10564. DOI: 10.1021/jacs.9b05932 (d) Chen, Y.; Wang, X.; He, X.; An, Q.; Zuo, Z. Photocatalytic Dehydroxymethylative Arylation by Synergistic Cerium and Nickel Catalysis. J. Am. Chem. Soc. 2021, 143, 4896–4902. DOI: 10.1021/jacs.1c00618
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 二重芳香族性を示す化合物の合成に成功!
  2. 生命が居住できる星の条件
  3. 接着系材料におけるmiHub活用事例とCSサポートのご紹介
  4. 英語発表に”慣れる”工夫を―『ハイブリッ…
  5. 文具に凝るといふことを化学者もしてみむとてするなり⑥:実験室でも…
  6. ルイス塩基触媒によるボロン酸の活性化:可視光レドックス触媒系への…
  7. 化学Webギャラリー@Flickr 【Part5】
  8. 有機合成化学協会誌2020年6月号:Chaxine 類・前周期遷…

注目情報

ピックアップ記事

  1. デヴィッド・ナギブ David A. Nagib
  2. 生物活性物質の化学―有機合成の考え方を学ぶ
  3. 光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応
  4. 理化学研究所、植物の「硫黄代謝」を調節する転写因子を発見
  5. 化学と権力の不健全なカンケイ
  6. ご注文は海外大学院ですか?〜選考編〜
  7. パール・クノール ピロール合成 Paal-Knorr Pyrrole Synthesis
  8. Dead Endを回避せよ!「全合成・極限からの一手」⑥
  9. まっすぐなペプチドがつまらないなら「さあ輪になって踊ろ!」
  10. Zachary Hudson教授の講演を聴講してみた

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年5月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー