[スポンサーリンク]

スポットライトリサーチ

超塩基に匹敵する強塩基性をもつチタン酸バリウム酸窒化物の合成

[スポンサーリンク]

第604回のスポットライトリサーチは、東京工業大学 元素戦略MDX研究センターの宮﨑 雅義(みやざぎ まさよし)助教にお願いしました。

本プレスリリースの研究内容は強塩基性の酸窒化物についてです。炭素―炭素の結合形成やビニル基の転位反応を触媒する塩基性酸化物は、酸素原子が塩基点として作用するため、酸素イオンとの電気陰性度の差が大きいアルカリ金属やアルカリ土類金属を用いて触媒が開発されてきました。一方で本研究では酸素イオンではなく、酸素空孔に隣接した窒素イオンに着目し、窒素イオンと酸素空孔が隣接した構造を有する六方晶BaTiO3-xNyが、超塩基触媒に匹敵する高い塩基性を示すことを見出しました。この研究成果は、「Journal of the American Chemical Society」誌に掲載され、またプレスリリースにも成果の概要が公開されています。

BaTiO3–xNy: Highly Basic Oxide Catalyst Exhibiting Coupling of Electrons at Oxygen Vacancies with Substituted Nitride Ions
Masayoshi Miyazaki, Hiroshi Saito, Kiya Ogasawara, Masaaki Kitano*, and Hideo Hosono*
J. Am. Chem. Soc. 2023, 145, 48, 25976-25982
DOI:doi.org/10.1021/jacs.3c10727

研究室を主宰されている元素戦略MDX研究センターの北野 政明教授より宮崎助教についてコメントを頂戴いたしました!

宮崎さんは、2020年4月から当グループに助教として加わってくだり、実験的能力だけでなく理論計算に関する知識も豊富であるため、私にはできない指導を学生にして頂けるので非常に助かっています。当グループでは、細野秀雄特命教授と共に研究を進めており、固体材料の電子構造が触媒特性に与える影響を重要視しています。宮崎さんは、元々金属間化合物触媒の研究をされており、固体材料中の原子配置や電子状態と触媒性能との関係を詳細に検討されていましたので、比較的スムーズに当グループのスタイルに馴染んだのだと思っています。今回の研究では、学生の齋藤君とともに酸窒化物材料を使った別の研究テーマを進行していたのですが、うまくいかないところも多く苦労している中で、「材料がもつ塩基性がかなり高いのでは?」と彼らが気づいたため今回の成果に繋がったと感じています。酸窒化物なら何でも塩基性が高くなるのではなく、窒素と近接するアニオン欠陥電子の共存が重要であることを宮崎さんが理論的に証明したところもポイントで、今後もさらにいい研究成果を出してくれると期待しています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

この研究は北野研究室に所属していた修士課程の齋藤君が行ったものです。本研究では、六方晶チタン酸バリウム酸水素化物(BaTiO2-xHx)に窒素イオンと酸素空孔を導入したチタン酸バリウム酸窒化物(BaTiO2-xNy)は、ドープしていない酸化物よりも非常に強い塩基性を示すことを明らかにしました(図1a)。酸窒化物中の窒素イオンは、酸素空孔にトラップされた電子からの電子供与によって高いエネルギー準位を形成しており、高い酸基質との反応性を示します(図1b)。

図1. (a)六方晶チタン酸バリウム酸化物の面共有酸素のヒドリド、窒素イオン置換による酸水素化物・酸窒化物の形成、(b)チタン酸バリウム酸窒化物のサイト構造とバンド構造

触媒の塩基性はCO2吸着昇温脱離、クロロホルム吸着IRおよび、クネフェナーゲル縮合反応によって検討しました。特に、クネフェナーゲル縮合反応の結果から、合成した酸窒化物は超塩基に匹敵する高い塩基性を有しながら、大気下でも活性を示し、高い再利用性を合わせ持つ触媒であることを明らかにしました(図2)。

図2. 異なる酸解離定数を持つニトリルを基質としたクネフェナーゲル縮合反応の結果

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

固体触媒の塩基強度をバンド構造によって説明したところがポイントであると感じています。酸化物のバンド構造に着目すると、酸塩基反応は酸化物のHOMOを構成する酸素イオンの2p軌道から酸基質のLUMOへの電子移動反応であると言えます。そのため、より強い塩基触媒を開発するためには、「塩基のHOMO のエネルギー準位を高め、酸のLUMOとの相互作用を強くする」、「塩基の電子密度を増加させ、LUMOへの電子移動を促進させる」という二つの条件を満たす必要があります。酸素空孔が存在しないLaTiO2Nなどの酸窒化物では、LUMOのエネルギー準位が少しシフトするに留まります。一方で、チタン酸バリウム酸窒化物中の窒素イオンはこれらの条件を満たすバンド構造を有しているため、高い塩基性を示すことを説明することができます。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

一般的な塩基強度の評価には、フェノールフタレインに代表される指示薬を用いた呈色反応が用いられますが、可視光吸収をもつ材料には不向きであり、色の変化によって塩基触媒の強度を決めることは困難でした。そのため、この研究ではニトリルとアルデヒドを基質として用いたクネフェナーゲル縮合反応を採用しました。異なる酸解離定数(pKa)を有するニトリルを反応基質として用いると、それぞれの触媒を用いて得られた活性から塩基強度を定量的に評価することができます。これにより、合成した酸窒化物は非常に活性化が難しいpKa = 28.9のニトリルを活性化できる強い塩基性を示すことを実証できました。

Q4. 将来は化学とどう関わっていきたいですか?

触媒の分野では、多くの研究が優れた性能を示す触媒のみに着目し、従来よりも良い性能を示す理由を説明しています。このような研究は正しく触媒性能を説明しているように見えますが、得られた理論は性能の低い触媒には当てはまらないことが多く、真に触媒性能を支配している要因を明らかにできていないと感じています。個人的には、優れた触媒を開発することにこだわらず、活性が低い触媒も含めたすべての触媒性能を説明できるサイエンスを明らかにしていきたいと思います。また、触媒研究ではどうしても応用化学的な立場に凝り固まってしまっていますが、物性物理からの切り口が重要であると痛感しています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

酸塩基触媒は中学生から学ぶ非常に古典的な分野ですが、超酸・超塩基触媒に代表されるように現在でも開発が続いている領域です。特に、物理的なバンド構造と化学的な塩基性を結びつけることができれば、特定の塩基強度を持つ触媒を開発できるのではないかと期待しています。

最後に、素晴らしい研究環境とご指導を頂いている細野秀雄特命教授、北野政明教授に改めて感謝申し上げます。また、研究を進めてくれた齋藤滉君、北野研究室の皆様に厚くお礼申し上げます。

研究者の略歴

名前:宮﨑 雅義(みやざぎ まさよし)
所属:東京工業大学 国際先駆研究機構 元素戦略MDX研究センター

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 有機合成化学協会誌2023年6月号:環状ペプチド天然物・フロキサ…
  2. 芳香環にフッ素を導入しながら変形する: 有機フッ素化合物の新規合…
  3. ナノってなんナノ?~日本発の極小材料を集めてみました~
  4. キノコから見いだされた新規生物活性物質「ヒトヨポディンA」
  5. 信じられない!驚愕の天然物たち
  6. ライトケミカル工業株式会社ってどんな会社?
  7. (-)-Calycanthine, (+)-Chimonanth…
  8. ガン細胞を掴んで離さない分子の開発

注目情報

ピックアップ記事

  1. マイクロ波を用いた革新的製造プロセスとヘルスケア領域への事業展開 (凍結乾燥/乾燥、ペプチド/核酸合成、晶析、その他有機合成など)
  2. Ns基とNos基とDNs基
  3. 化学系企業の採用活動 ~現場の研究員視点で見ると~
  4. 第36回 生体を模倣する化学― Simon Webb教授
  5. 合成小分子と光の力で細胞内蛋白質の局在を自在に操る!
  6. 有機反応を俯瞰する ーヘテロ環合成: C—C 結合で切る
  7. 合成ルートはどれだけ”良く”できるのか?分子構造からプロセス質量強度を予測する SMART-PMI
  8. 楊井 伸浩 Nobuhiro Yanai
  9. シンクロトロン放射光を用いたカップリング反応機構の解明
  10. 2010年ノーベル化学賞予想ーケムステ版

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年3月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

PythonとChatGPTを活用するスペクトル解析実践ガイド

概要ケモメトリクスと機械学習によるスペクトル解析を、Pythonの使い方と数学の基礎から実践…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー