[スポンサーリンク]

一般的な話題

ラジカル重合の弱点を克服!精密重合とポリマーの高機能化を叶えるRAFT重合

[スポンサーリンク]

アゾ重合開始剤とその関連技術について学べるシリーズ第3弾!

第1回第2回では、アゾ重合開始剤について知識を深めていただきました。

アゾ重合開始剤はラジカル重合において開始剤として用いられます。ラジカル重合は様々な利点から広く用いられていますが、分子量分布の制御が難しいという弱点もあります。今回は、ラジカル重合をより精密に制御できる「RAFT重合」についてご紹介いたします。

富士フイルム和光純薬株式会社では、量産化レベルでご提供できるRAFT剤を多数ラインナップしております。また、RAFT剤の合成からRAFT重合までの一貫した受託製造も承っております。

サンプルのご提供や、研究に合わせたご提案も可能ですので、是非お問い合わせください!

Ⅰ.ラジカル重合の弱点                                        

ラジカル重合は多様なモノマーへの適用が可能で特殊設備を比較的必要とせず、水中での反応も容易であるというメリットから、工業的に広く使われています。

しかし、従来のラジカル重合は、成長ラジカル同士が結合する「再結合」による停止や、成長ラジカルが反応系中の他の分子から水素などを引き抜いて失活するとともに新たな成長ラジカルが生成する「連鎖移動」等の副反応が起きることから反応の制御が難しく、また、一旦ラジカル活性種が生成すると停止反応や連鎖移動反応が起こるまでは成長反応を続けるため、分子量の精密な制御は困難であるという特徴があります。

このため、ラジカル重合の生成物は重合度がまちまちな、分子量分布の広い高分子になりやすいという弱点がありました。

この弱点を克服できるのがリビングラジカル重合であり、中でも注目されているのが『RAFT重合 (Reversible Addition-Fragmentation Chain Transfer Polymerization, 可逆的付加開裂連鎖移動重合)』なのです!

 

Ⅱ.リビングラジカル重合とは?                                       

リビング(生きている)とは、まさに重合活性種(成長ラジカル)が死なないことです。したがって、リビング重合とはポリマー末端の生長点が「生きた」まま、すなわち反応性を保った状態で重合が進むものを指します。

リビングラジカル重合としては、主に ATRP、NMP(Nitroxide-Mediated Radical Polymerization:ニトロキシド介在ラジカル重合)、RAFT重合の3種が知られています。

中でもRAFT重合は、

・通常のラジカル重合系にRAFT剤を加えるだけで精密重合が可能

・有毒な金属触媒を必要としない

・多くの官能基や溶媒(水を含む)が利用可能

という利点から、その論文数・特許件数は徐々に増加しています

 

Ⅲ.RAFT重合とは?                                     

RAFT重合は、連鎖移動剤(RAFT剤)を用いて分子量分布が狭いポリマーやブロックポリマーなどの高機能なポリマーを合成することができる手法です。

生長中のポリマー末端のラジカル(P・)に対して、RAFT剤が付加した後、脱離基Rがラジカルとして離れてゆき、ここから新たなポリマー鎖が生長します(連鎖移動反応)。新たに生成したジチオエステル類は再び連鎖移動剤として働くため、これらの反応はモノマーが完全に消費されるまで繰り返されるというのが、RAFT重合の基本的な流れです。

 

Ⅳ.RAFT剤の選び方                                      

前述の通り、RAFT重合は交換連鎖によってリビングラジカル重合になっていますが、この平衡反応は成長末端のラジカルとRAFT剤に付加してできるラジカルの安定性が重要です。

そのため、モノマーに応じて最適なRAFT剤を選ぶことが、十分な制御の実現につながります。

富士フイルム和光純薬では、様々なモノマーに適合するRAFT剤をご用意しております。

【RAFT剤とモノマーの適合表】

 

Ⅴ.アゾ重合開始剤残存率計算ツールのご紹介                                           

最後に、アゾ重合開始剤をお使いの皆様へお役立ちツールを紹介します!

通常、残存率や反応条件(分解反応時間、分解反応温度)を特定するためには、文献を参照したり複雑な計算式を用いて計算したりする必要がありますが、それらをワンクリックで算出できるのが『アゾ重合開始剤 残存率計算ツール』です。

当社の研究部門でも大好評のツールですので、研究の際には是非ご活用ください!

ここまでお読みいただきありがとうございました。

富士フイルム和光純薬では、豊富な知見から様々なご提案をさせていただいております。皆様の研究をサポートいたしますので、お気軽にお問い合わせください。

関連リンク 

富士フイルム和光純薬 化成品HP

アゾ重合開始剤とその関連技術について学べるシリーズ

 

Avatar photo

ケムステPR

投稿者の記事一覧

ケムステのPRアカウントです。募集記事や記事体広告関連の記事を投稿します。

関連記事

  1. エクソソーム学術セミナー 主催:同仁化学研究所
  2. 有機合成化学協会誌2017年6月号 :創薬・糖鎖合成・有機触媒・…
  3. ChemDraw for iPadを先取りレビュー!
  4. ナイロンに関する一騒動 ~ヘキサメチレンジアミン供給寸断
  5. 「天然物ケミカルバイオロジー分子標的と活性制御シンポジウム」に参…
  6. 【十全化学】新卒採用情報
  7. 炭素-炭素結合を組み替えて多環式芳香族化合物を不斉合成する
  8. 3Mとはどんな会社?

注目情報

ピックアップ記事

  1. Purification of Laboratory Chemicals
  2. ケムステV年末ライブ & V忘年会2020を開催します!
  3. アスピリンから生まれた循環型ビニルポリマー
  4. 動的共有結合性ラジカルを配位子とした金属錯体の合成
  5. 中国へ講演旅行へいってきました①
  6. ソラノエクレピンA (solanoeclepin A)
  7. 英文校正会社が教える 英語論文のミス100
  8. 「イオンで農薬中和」は不当表示・公取委、米販2社に警告
  9. 元素のふしぎ展に行ってきました
  10. 【書籍】化学における情報・AIの活用: 解析と合成を駆動する情報科学(CSJカレントレビュー: 50)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー