[スポンサーリンク]

化学者のつぶやき

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

[スポンサーリンク]

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換基を非対称にもつπ共役系配位子の利用で環状構造が実現できた。

サンドイッチ化合物の構造

1951年に発見されたフェロセンは、有機金属化学を拓くにとどまらず、今なお研究者の注目を集め、新規構造の開拓とその応用の両面から研究が続けられている(図1A)(1)。フェロセンのように金属原子がπ共役系配位子に挟まれた構造の化合物は、サンドイッチ化合物と呼ばれる。中でも、サンドイッチ構造が重なったマルチデッカー化合物は、直鎖状に伸びた構造からナノワイヤーへの応用が研究されている(2)。一方、マルチデッカー化合物で環状構造を構築するには、マルチデッカー構造を折り曲げなければならず(金属原子と2つのπ共役系配位子のなす角度が180°以下)、未だ報告がない。

以前著者らは、溶解性と立体保護をねらい嵩高い置換基を非対称にもつCotTIPSを用いてマルチデッカー化合物を合成した(図1B)(3)。その結果、TIPS基同士の立体障害により屈曲した構造のマルチデッカー化合物を得た。彼らはこの屈曲角(∠Ct–Sm–Ct = 160°)が正十八角形の内角に近しいことに着目し、CotTIPSを用いれば環状マルチデッカー化合物が構築できると考えた。実際、今回彼らは[MII(thf)3(cotTIPS)]を調製したのち、結晶化することで十八量体からなる環状構造の構築に成功した。この環状マルチデッカー化合物はシクロセンと命名された。

図1. (A) サンドイッチ化合物の構造 (画像 著作 jcomp/出典:Freepik) (B) CotTIPSを用いた屈曲/環状マルチデッカー化合物

 

Synthesis and Properties of Cyclic Sandwich Compounds”

Münzfeld, L.; Gillhuber, S.; Hauser, A.; Lebedkin, S.; Hädinger, P.; Knöfel, N. D.; Zovko, C.; Gamer, M. T.; Weigend, F.; Kappes, M. M.; Roesky, P. W. Nature 2023, 620, 92–96.

DOI: 10.1038/s41586-023-06192-4

論文著者の紹介

研究者: Peter W. Roesky

研究者の経歴:

1992–1994 Ph.D., Technical University of Munich, Germany (Prof. W. A. Herrmann)
1995–1996 Postdoc, Northwestern University, USA (Prof. T. J. Marks)
1996–1999 Habilitation, University of Karlsruhe, Germany (Prof. Dr. D. Fenske)
1999–2001 Privatdozent, University of Karlsruhe, Germany
2001–2008 Professor of Inorganic Chemistry, Free University of Berlin, Germany
2008–      Professor of Inorganic Chemistry, University of Karlsruhe (currently Karlsruher Institute for Technology), Germany

研究内容: ランタノイド、金、亜鉛、アルカリ土類金属などの錯体の性質解明と触媒への応用

論文の概要

THF中、SrI2または[MIII2(thf)2] (M = Sm, Eu, Yb)に対して[K2(cotTIPS)]を作用させ、アニオン交換により[MII(thf)3(cotTIPS)]を調製した(図2A)。続いて、toluene/THF混合溶液から結晶化させると、[MII(thf)3(cotTIPS)]からTHFが解離し、シクロセンの結晶が得られた。

X線結晶構造解析の結果、得られたシクロセンは想定どおりに十八量体からなる環状構造であることが明らかとなった(図2B上)。SmシクロセンのSm–cotTIPS間の距離は2.2 Å、環の内径は17 Å、外径は38 Åであった。また、Ct–Sm–Ctの屈曲角は正十八角形の内角(160°)をわずかに上回っており、18個のSm原子は同一平面上に存在していなかった。SrおよびEuのシクロセンもSmシクロセンとほとんど変わらない環状構造を構築している。一方、Ybの場合、Ybに一分子のTHFが配位した環状四量体が構築されていた(図2B下)。Yb–cotTIPS間の二種類の配位結合のうち片方は二つの炭素がYbに配位しており、サンドイッチ構造をとっていなかった。Ybの環状四量体構築に関する考察および一連の化合物の光学特性に関する詳細は論文を参照されたい。

続いて、CotTIPSを用いることで環状構造が構築される理由を調査するためにDFT計算を実施した(図2C)。まず、Smシクロセンの部分構造の屈曲角(∠Ct–Sm–Ct)に対する置換基の効果を調査した。置換基をもたないCotでは屈曲せず、置換基がTMS基の場合でも屈曲角は178°と大きな変化はみられなかった。一方、TIPS基ではおよそ160°まで屈曲したため、TIPS基の嵩高さが屈曲構造の構築に必須であることが明らかとなった。また、シクロセンにおいても屈曲角は部分構造からほとんど変化していないため、大きな歪みなく環状構造が構築できる。次に、環構築の各段階におけるギブス自由エネルギーを算出した。鎖状構造ではモノマーが一つ増えるごとに約140 kJ/molずつ安定化する。その際、CotTIPSが回転すると27 kJ/mol不安定になるため、屈曲方向がそろうように鎖状構造が伸長する。さらに、閉環時の安定化エネルギーが322 kJ/molと大きく、十八量体においては環状構造が有利である。以上の理由から、環構築が円滑に進行することが明らかとなった。

図2. (A) シクロセンの合成 (B) シクロセンおよびYb環状四量体の構造 (C) 環構築における屈曲角およびギブス自由エネルギー(kJ/mol)

 

以上、嵩高い置換基を非対称にもつπ共役系配位子の利用により環状マルチデッカー化合物であるシクロセンが合成された。今後、置換基や金属種のさらなる検討によりシクロセンの化学の輪が広がることを期待する。

参考文献

  1. (a) Kealy, T. J.; Pauson, P. L. A New Type of Organo-Iron Compound. Nature 1951, 168, 1039–1040. DOI: 1038/1681039b0 (b) Fischer, E. O.; Pfab, W. Cyclopentadien-Metallkomplexe, ein Neuer Typ Metallorganischer Verbindungen. Z. Naturforsch., B: Chem. Sci. 1952, 7, 377–379. DOI: 10.1515/znb-1952-0701 (c) Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. The Structure of Iron Bis-cyclopentadienyl. J. Am. Chem. Soc. 1952, 74, 2125–2126. DOI: 10.1021/ja01128a527
  2. (a) Werner, H.; Salzer, A. Die Synthese Eines Ersten Doppel-Sandwich-Komplexes: Das Dinickeltricyclopentadienyl-Kation. React. Inorg. Met.-Org. Chem. 1972, 2, 239–248. DOI: 10.1080/00945717208069606 (b) Kurikawa, T.; Negishi, Y.; Hayakawa, F.; Nagao, S.; Miyajima, K.; Nakajima, A.; Kaya, K. Multiple-Decker Sandwich Complexes of Lanthanide-1,3,5,7-cyclooctatetraene [Lnn(C8H8)m] (Ln = Ce, Nd, Eu, Ho, and Yb); Localized Ionic Bonding Structure. J. Am. Chem. Soc. 1998, 120, 11766–11772. DOI: 10.1021/ja982438t
  3. Münzfeld, L.; Hauser, A.; Hädinger, P.; Weigend, F.; Roesky, P. W. The Archetypal Homoleptic Lanthanide Quadruple-Decker—Synthesis, Mechanistic Studies, and Quantum Chemical Investigations. Angew. Chem., Int. Ed. 2021, 60, 24493–24499. DOI: 10.1002/anie.202111227
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有機合成化学協会誌2019年8月号:パラジウム-フェナントロリン…
  2. ゼロから学ぶ機械学習【化学徒の機械学習】
  3. 2002年ノーベル化学賞『生体高分子の画期的分析手法の開発』
  4. 親子で楽しめる化学映像集 その2
  5. エントロピーを表す記号はなぜSなのか
  6. 【書籍】『これから論文を書く若者のために』
  7. ノルゾアンタミンの全合成
  8. Chemistry Reference Resolverをさらに…

注目情報

ピックアップ記事

  1. Cu(I) の構造制御による π 逆供与の調節【低圧室温水素貯蔵への一歩】
  2. 水素化ほう素ナトリウム : Sodium Borohydride
  3. 昭和電工、異種材接合技術を開発
  4. 冬のナノテク関連展示会&国際学会情報
  5. 茅幸二、鈴木昭憲、田中郁三ら文化功労者に
  6. 電場を利用する効率的なアンモニア合成
  7. 2017年10大化学ニュース
  8. CV書いてみた:ポスドク編
  9. 関東化学2019年採用情報
  10. 超強塩基触媒によるスチレンのアルコール付加反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

【スポットライトリサーチ】汎用金属粉を使ってアンモニアが合成できたはなし

Tshozoです。 今回はおなじみ、東京大学大学院 西林研究室からの研究成果紹介(第652回スポ…

第11回 野依フォーラム若手育成塾

野依フォーラム若手育成塾について野依フォーラム若手育成塾では、国際企業に通用するリーダー…

第12回慶應有機化学若手シンポジウム

概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大学理工学部・…

新たな有用活性天然物はどのように見つけてくるのか~新規抗真菌剤mandimycinの発見~

こんにちは!熊葛です.天然物は複雑な構造と有用な活性を有することから多くの化学者を魅了し,創薬に貢献…

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー