[スポンサーリンク]

化学者のつぶやき

全フッ素置換シクロプロピル化試薬の開発

[スポンサーリンク]

ペンタフルオロシクロプロピル(PFCP)基をもつ新たなスルホニウム塩が開発された。本試薬を用いた可視光駆動型C–H官能基化反応により種々の生物活性ヘテロアレーンにPFCP基が導入できた

研究の概要

フルオロアルキル基は医農薬品に頻出の構造である。酸化的代謝に安定で、フッ素の置換パターンによって異なる物理化学的性質を付与することができる。このことから、様々なフルオロアルキル基が創薬研究に利用されてきた。最近では、ヘプタフルオロイソプロピル基をもつNicofluproleやPyrifluquinazonなどが上市され、安全かつ有効な殺虫剤として注目される(図1A)[1]。新規フルオロアルキル基は創薬に大きく貢献するが、探索合成に積極的に利用するには、簡便な導入法が求められる。

今回、著者らはシクロプロピル基のフッ素置換体である、ペンタフルオロシクロプロピル基(PFCP基)に着目した(図1B)。PFCP基はヘプタフルオロイソプロピル基に比べ、ファンデルワールス体積が小さく、環状構造ゆえ剛直である。また、p共役系との共役相互作用から、コンフォメーションが固定される[2]。ヘプタフルオロイソプロピル基と似て非なる物性を示すPFCP基は、医農薬品開発への貢献が期待されるが、PFCP基の直接的導入法の報告はなかった[3]

これまで、梅本試薬やそのチアントレン誘導体は、フルオロアルキル化反応に広く利用されてきた(図1C)[4]。著者らは、容易にフルオロアルキルラジカルを生成するスルホニウム塩に着目し、PFCP基をもつ新たなフルオロアルキル化試薬を合成した。実際に5-(ペンタフルオロシクロプロピル)ジベンゾチオフェニウムトリフラート(1)を用いると、可視光照射下、幅広いアレーンへPFCP基を導入できた(図1D)。

図1. (A) ヘプタフルオロイソプロピル基を含む殺虫剤の例、(B) PFCPの構造的特徴、(C) フルオロアルキル化試薬の例、(D) 本研究

 

Pentafluorocyclopropanation of (Hetero)arenes Using Sulfonium Salts: Applications in Late-Stage Functionalization

Feng, Z.; Riemann, L.; Guo, Z.; Herrero, D.; Simon, M.; Golz, C.; Mata, R. A.; Alcarazo, M. Angew. Chem., Int. Ed. 2023, 62, e202306764.

DOI:  10.1002/anie.202306764

論文著者の紹介

研究者 : Manuel Alcarazo

研究者の経歴

–2000                                                B.Sc., the University of Seville, Spain
2000–2002               M.Sc., the University of Seville, Spain (Prof. Rosario Fernández)
2002–2005               Ph.D., the Institute of Chemical Research, Spain (Dr. José M. Lassaletta)
2005–2008               Postdoc, the Max Planck Institute for Coal Research, Germany (Prof. Alois Fürstner)
2009–2015               Independent Junior Group Leader at the Max Planck Institute for Coal Research, Germany
2015–            Professor, University of Göttingen, Germany
2017–                                                Director of the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Germany

研究内容:新規カチオン性リン配位子の開発、電子求引基の新しい転位試薬の設計と合成、キラルカチオン配位子とその触媒反応への応用

論文の概要

まず、著者らはアリールチオラートから合成したトリフルオロビニルスルフィド5を、[2+1]シクロプロパン化反応とmCPBA酸化によりスルホキシド7へと変換した(図2A)[2]。その後、7をトリフルオロメタンスルホン酸無水物と反応させ、スルホニウム塩1へ導いた。

検討の結果、著者らはヘテロアレーンに対し、NaHCO3および1を作用させ、可視光を照射することで、EDA錯体の形成を起点とするC–Hペンタフルオロシクロプロパン化反応が進行することを見いだした(図2B左)。ただし、適用可能な基質はTryptophane誘導体8aをはじめとする、電子豊富なヘテロアレーンのみであった。Caffeine(8b)などの電子不足なヘテロアレーンに対しては、先述の条件に触媒量のルテニウム錯体を加えることでPFCP基を導入することができる(図2B右)。

次に、推定反応経路を示す(図2C)。まず、EDA錯体(1+8)の光誘起電子移動もしくはルテニウム触媒(Ru2+*)による1の一電子還元で、PFCPラジカル3を生成する。続いて、3がヘテロアレーンに付加したのち、ルテニウム触媒(Ru3+)または1による一電子酸化を経て生成物9を与える。

各生成物のX線結晶構造解析から、PFCP基のベンジル位C–F結合はヘテロ環と直交することがわかった。ベンジル位C–F結合とヘテロ環が平行になるヘプタフルオロイソプロピル基とは異なる傾向をもつことが確認できた(詳細は論文参照)。

図2. (A)スルホニウム塩の合成経路、(B)最適条件、(C)推定反応経路

以上、Alcarazoらは新規フルオロアルキル化試薬を報告した。この試薬を用いることで、種々のヘテロアレーンへのPFCP基の導入が可能となった。今後、含PFCP医農薬品が開発されることを期待する。

参考文献

  1. (a) El Qacemi, S. Rendine, P. Maienfisch, in Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostic and Agro- chemicals (Eds.: G. Haufe, F. Leroux), Elsevier Inc., London, 2019, 607–623 (b) Parmentier, C.; Baze, A.; Untrau, M.; Kampkoetter, A.; Lasserre, D.; Richert, L. Evaluation of Human Relevance of Nicofluprole-Induced Rat Thyroid Disruption. Toxicol. Appl. Pharmacol.2022435, 115831. DOI: 10.1016/j.taap.2021.115831 (c) Jeanmart, S.; Edmunds, A. J. F.; Lamberth, C.; Pouliot, M.; Morris, J. A. Synthetic Approaches to the 2019–2020 New Agrochemicals. Synthesis. 2023, a-2142-8961. DOI:10.1055/a-2142-8961 (d) Kareh, C.; Nemer, N. Evaluation of Insecticides in the Management of Whiteflies (Bemisia Tabaci Gennadius) and Their Impacts on Yield of Eggplants. ujar 202311, 715–722. DOI: 10.13189/ujar.2023.110405 (e) Kang, M. A.; Seo, M. J.; Hwang, I. C.; Jang, C.; Park, H. J.; Yu, Y. M.; Youn, Y. N. Insecticidal Activity and Feeding Behavior of the Green Peach Aphid, Myzus Persicae, after Treatment with Nano Types of Pyrifluquinazon. J. Asia Pac. Entomol. 201215, 533–541. DOI: 10.1016/j.aspen.2012.05.015
  2. Shen, Q.; Wells, C.; Traetteberg, M.; Bohn, R. K.; Willis, A.; Knee, J. Molecular Structure and Conformation of Cyclopropylbenzene as Determined by Ab Initio Molecular Orbital Calculations, Pulsed-Jet Fourier Transform Microwave Spectroscopic, and Gas-Phase Electron Diffraction Investigations. J. Org. Chem. 2001, 66, 5840–5845. DOI: 10.1021/jo010293u
  3. (a) Liu, R.; Hu, J. Synthesis of Aryl Perfluorocyclopropyl Ethers via [2+1] Cyclopropanation Using TMSCF2Br Reagent. Org. Lett 202224, 3589–3593. DOI: 10.1021/acs.orglett.2c00958 (b) Yang, Z.-Y. Preparation of Highly Fluorinated Cyclopropanes and Ring-Opening Reactions with Halogens. J. Org. Chem. 2003, 68, 4410–4416. DOI: 10.1021/jo030014y
  4. (a) Feng, Z.; Marset, X.; Tostado, J.; Kircher, J.; She, Z.; Golz, C.; Mata, R. A.; Simon, M.; Alcarazo, M. 5‐(Trifluorovinyl)Dibenzothiophenium Triflate: Introducing the 1,1,2‐Trifluoroethylene Tether in Drug‐Like Structures. Chemistry A European J 202329, e202203966. DOI: 1002/chem.202203966 (b)Jia, H.; Häring, A. P.; Berger, F.; Zhang, L.; Ritter, T. Trifluoromethyl Thianthrenium Triflate: A Readily Available Trifluoromethylating Reagent with Formal CF3+, CF3, and CF3Reactivity. J. Am. Chem. Soc. 2021143, 7623–7628. DOI: 10.1021/jacs.1c02606 (c) Le, C.; Chen, T. Q.; Liang, T.; Zhang, P.; MacMillan, D. W. C. A Radical Approach to the Copper Oxidative Addition Problem: Trifluoromethylation of Bromoarenes. Science 2018360, DOI: 1010–1014. 10.1126/science.aat4133 (d) Umemoto, T.; Ishihara, S. Power-Variable Electrophilic Trifluoromethylating Agents. S-, Se-, and Te-(Trifluoromethyl)Dibenzothio-, -Seleno-, and -Tellurophenium Salt System. J. Am. Chem. Soc. 1993115, 2156–2164. DOI: 10.1021/ja00059a009
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 触媒的プロリン酸化を起点とするペプチドの誘導体化
  2. 光触媒に相談だ 直鎖型の一級アミンはアンモニア水とアルケンから
  3. 中性子線を利用した分析法
  4. 含ケイ素三重結合化合物(Si≡Mo、Si≡C)
  5. 「MI×データ科学」コース実施要綱~データ科学を利用した材料研究…
  6. 有機合成から無機固体材料設計・固体物理へ: 分子でないものの分子…
  7. プロセス化学ー合成化学の限界に挑戦するー
  8. ケトンをエステルに変えてぶった斬る!脱アシル型カップリング反応の…

注目情報

ピックアップ記事

  1. The Merck Index: An Encyclopedia of Chemicals, Drugs, And Biologicals
  2. コロナウイルスCOVID-19による化学研究への影響を最小限にするために
  3. 2,4,6-トリイソプロピルベンゼンスルホニルクロリド:2,4,6-Triisopropylbenzenesulfonyl Chloride
  4. 有機合成化学協会誌2021年7月号:PoxIm・トリアルキルシリル基・金触媒・アンフィジノール3・効率的クリック標識法・標的タンパク質指向型天然物単離
  5. 【書籍】化学探偵Mr.キュリー5
  6. 大型リチウムイオン電池の基礎知識【終了】
  7. ニーメントウスキー キノリン/キナゾリン合成 Niementowski Quinoline/Quinazoline Synthesis
  8. 99.7%の精度で偽造ウイスキーを見抜ける「人工舌」が開発される
  9. シガトキシン /ciguatoxin
  10. 科学を理解しようとしない人に科学を語ることに意味はあるのか?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP