[スポンサーリンク]

化学者のつぶやき

全フッ素置換シクロプロピル化試薬の開発

[スポンサーリンク]

ペンタフルオロシクロプロピル(PFCP)基をもつ新たなスルホニウム塩が開発された。本試薬を用いた可視光駆動型C–H官能基化反応により種々の生物活性ヘテロアレーンにPFCP基が導入できた

研究の概要

フルオロアルキル基は医農薬品に頻出の構造である。酸化的代謝に安定で、フッ素の置換パターンによって異なる物理化学的性質を付与することができる。このことから、様々なフルオロアルキル基が創薬研究に利用されてきた。最近では、ヘプタフルオロイソプロピル基をもつNicofluproleやPyrifluquinazonなどが上市され、安全かつ有効な殺虫剤として注目される(図1A)[1]。新規フルオロアルキル基は創薬に大きく貢献するが、探索合成に積極的に利用するには、簡便な導入法が求められる。

今回、著者らはシクロプロピル基のフッ素置換体である、ペンタフルオロシクロプロピル基(PFCP基)に着目した(図1B)。PFCP基はヘプタフルオロイソプロピル基に比べ、ファンデルワールス体積が小さく、環状構造ゆえ剛直である。また、p共役系との共役相互作用から、コンフォメーションが固定される[2]。ヘプタフルオロイソプロピル基と似て非なる物性を示すPFCP基は、医農薬品開発への貢献が期待されるが、PFCP基の直接的導入法の報告はなかった[3]

これまで、梅本試薬やそのチアントレン誘導体は、フルオロアルキル化反応に広く利用されてきた(図1C)[4]。著者らは、容易にフルオロアルキルラジカルを生成するスルホニウム塩に着目し、PFCP基をもつ新たなフルオロアルキル化試薬を合成した。実際に5-(ペンタフルオロシクロプロピル)ジベンゾチオフェニウムトリフラート(1)を用いると、可視光照射下、幅広いアレーンへPFCP基を導入できた(図1D)。

図1. (A) ヘプタフルオロイソプロピル基を含む殺虫剤の例、(B) PFCPの構造的特徴、(C) フルオロアルキル化試薬の例、(D) 本研究

 

Pentafluorocyclopropanation of (Hetero)arenes Using Sulfonium Salts: Applications in Late-Stage Functionalization

Feng, Z.; Riemann, L.; Guo, Z.; Herrero, D.; Simon, M.; Golz, C.; Mata, R. A.; Alcarazo, M. Angew. Chem., Int. Ed. 2023, 62, e202306764.

DOI:  10.1002/anie.202306764

論文著者の紹介

研究者 : Manuel Alcarazo

研究者の経歴

–2000                                                B.Sc., the University of Seville, Spain
2000–2002               M.Sc., the University of Seville, Spain (Prof. Rosario Fernández)
2002–2005               Ph.D., the Institute of Chemical Research, Spain (Dr. José M. Lassaletta)
2005–2008               Postdoc, the Max Planck Institute for Coal Research, Germany (Prof. Alois Fürstner)
2009–2015               Independent Junior Group Leader at the Max Planck Institute for Coal Research, Germany
2015–            Professor, University of Göttingen, Germany
2017–                                                Director of the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Germany

研究内容:新規カチオン性リン配位子の開発、電子求引基の新しい転位試薬の設計と合成、キラルカチオン配位子とその触媒反応への応用

論文の概要

まず、著者らはアリールチオラートから合成したトリフルオロビニルスルフィド5を、[2+1]シクロプロパン化反応とmCPBA酸化によりスルホキシド7へと変換した(図2A)[2]。その後、7をトリフルオロメタンスルホン酸無水物と反応させ、スルホニウム塩1へ導いた。

検討の結果、著者らはヘテロアレーンに対し、NaHCO3および1を作用させ、可視光を照射することで、EDA錯体の形成を起点とするC–Hペンタフルオロシクロプロパン化反応が進行することを見いだした(図2B左)。ただし、適用可能な基質はTryptophane誘導体8aをはじめとする、電子豊富なヘテロアレーンのみであった。Caffeine(8b)などの電子不足なヘテロアレーンに対しては、先述の条件に触媒量のルテニウム錯体を加えることでPFCP基を導入することができる(図2B右)。

次に、推定反応経路を示す(図2C)。まず、EDA錯体(1+8)の光誘起電子移動もしくはルテニウム触媒(Ru2+*)による1の一電子還元で、PFCPラジカル3を生成する。続いて、3がヘテロアレーンに付加したのち、ルテニウム触媒(Ru3+)または1による一電子酸化を経て生成物9を与える。

各生成物のX線結晶構造解析から、PFCP基のベンジル位C–F結合はヘテロ環と直交することがわかった。ベンジル位C–F結合とヘテロ環が平行になるヘプタフルオロイソプロピル基とは異なる傾向をもつことが確認できた(詳細は論文参照)。

図2. (A)スルホニウム塩の合成経路、(B)最適条件、(C)推定反応経路

以上、Alcarazoらは新規フルオロアルキル化試薬を報告した。この試薬を用いることで、種々のヘテロアレーンへのPFCP基の導入が可能となった。今後、含PFCP医農薬品が開発されることを期待する。

参考文献

  1. (a) El Qacemi, S. Rendine, P. Maienfisch, in Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostic and Agro- chemicals (Eds.: G. Haufe, F. Leroux), Elsevier Inc., London, 2019, 607–623 (b) Parmentier, C.; Baze, A.; Untrau, M.; Kampkoetter, A.; Lasserre, D.; Richert, L. Evaluation of Human Relevance of Nicofluprole-Induced Rat Thyroid Disruption. Toxicol. Appl. Pharmacol.2022435, 115831. DOI: 10.1016/j.taap.2021.115831 (c) Jeanmart, S.; Edmunds, A. J. F.; Lamberth, C.; Pouliot, M.; Morris, J. A. Synthetic Approaches to the 2019–2020 New Agrochemicals. Synthesis. 2023, a-2142-8961. DOI:10.1055/a-2142-8961 (d) Kareh, C.; Nemer, N. Evaluation of Insecticides in the Management of Whiteflies (Bemisia Tabaci Gennadius) and Their Impacts on Yield of Eggplants. ujar 202311, 715–722. DOI: 10.13189/ujar.2023.110405 (e) Kang, M. A.; Seo, M. J.; Hwang, I. C.; Jang, C.; Park, H. J.; Yu, Y. M.; Youn, Y. N. Insecticidal Activity and Feeding Behavior of the Green Peach Aphid, Myzus Persicae, after Treatment with Nano Types of Pyrifluquinazon. J. Asia Pac. Entomol. 201215, 533–541. DOI: 10.1016/j.aspen.2012.05.015
  2. Shen, Q.; Wells, C.; Traetteberg, M.; Bohn, R. K.; Willis, A.; Knee, J. Molecular Structure and Conformation of Cyclopropylbenzene as Determined by Ab Initio Molecular Orbital Calculations, Pulsed-Jet Fourier Transform Microwave Spectroscopic, and Gas-Phase Electron Diffraction Investigations. J. Org. Chem. 2001, 66, 5840–5845. DOI: 10.1021/jo010293u
  3. (a) Liu, R.; Hu, J. Synthesis of Aryl Perfluorocyclopropyl Ethers via [2+1] Cyclopropanation Using TMSCF2Br Reagent. Org. Lett 202224, 3589–3593. DOI: 10.1021/acs.orglett.2c00958 (b) Yang, Z.-Y. Preparation of Highly Fluorinated Cyclopropanes and Ring-Opening Reactions with Halogens. J. Org. Chem. 2003, 68, 4410–4416. DOI: 10.1021/jo030014y
  4. (a) Feng, Z.; Marset, X.; Tostado, J.; Kircher, J.; She, Z.; Golz, C.; Mata, R. A.; Simon, M.; Alcarazo, M. 5‐(Trifluorovinyl)Dibenzothiophenium Triflate: Introducing the 1,1,2‐Trifluoroethylene Tether in Drug‐Like Structures. Chemistry A European J 202329, e202203966. DOI: 1002/chem.202203966 (b)Jia, H.; Häring, A. P.; Berger, F.; Zhang, L.; Ritter, T. Trifluoromethyl Thianthrenium Triflate: A Readily Available Trifluoromethylating Reagent with Formal CF3+, CF3, and CF3Reactivity. J. Am. Chem. Soc. 2021143, 7623–7628. DOI: 10.1021/jacs.1c02606 (c) Le, C.; Chen, T. Q.; Liang, T.; Zhang, P.; MacMillan, D. W. C. A Radical Approach to the Copper Oxidative Addition Problem: Trifluoromethylation of Bromoarenes. Science 2018360, DOI: 1010–1014. 10.1126/science.aat4133 (d) Umemoto, T.; Ishihara, S. Power-Variable Electrophilic Trifluoromethylating Agents. S-, Se-, and Te-(Trifluoromethyl)Dibenzothio-, -Seleno-, and -Tellurophenium Salt System. J. Am. Chem. Soc. 1993115, 2156–2164. DOI: 10.1021/ja00059a009
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. シクロヘキサンの片面を全てフッ素化する
  2. おまえら英語よりもタイピングやろうぜ ~上級編~
  3. 動画:知られざる元素の驚きの性質
  4. 光触媒を用いるスピロ環合成法が創薬の未来を明るく照らす
  5. アルキンメタセシスで誕生!HPB to γ-グラフィン!
  6. プロジェクトディレクトリについて
  7. オンライン講演会に参加してみた~学部生の挑戦記録~
  8. 海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~…

注目情報

ピックアップ記事

  1. ラジカルパスでアリールをホウ素から炭素へパス!
  2. マテリアルズ・インフォマティクスにおける初期データ戦略 -新規テーマでの対応方法をご紹介-
  3. 自動車の電動化による素材・化学業界へのインパクト
  4. ダイヤモンド構造と芳香族分子を結合させ新たな機能性分子を創製
  5. フラーレンの“籠”でH2O2を運ぶ
  6. 第176回―「物質表面における有機金属化学」Christophe Copéret教授
  7. 細菌ゲノム、完全合成 米チーム「人工生命」に前進
  8. 元素のふしぎ展に行ってきました
  9. 人前ではとても呼べない名前の化合物
  10. N-ヨードサッカリン:N-Iodosaccharin

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー