[スポンサーリンク]

化学者のつぶやき

マクマリーを超えてゆけ!”カルボニルクロスメタセシス反応”

[スポンサーリンク]

カルボニル化合物の立体選択的交差McMurryカップリングが開発された。鉄触媒を用いるとZ体、クロム触媒を用いるとE体のオレフィンが選択的に得られる。

カルボニルクロスメタセシス反応

二重結合を組み換えるメタセシス反応は、新たな炭素-炭素二重結合形成の有力な手法である。オレフィンメタセシス反応は周知のとおり[1]、近年ではアルケンとカルボニル化合物からオレフィンを得るメタセシス反応も開発された[2]。また、2つのカルボニル化合物からオレフィンを得る反応としてMcMurryカップリングが知られる[3]。しかし、同カップリングは、異なるカルボニル化合物の場合、3種類のアルケン混合物を与え、立体選択性(E/Z選択性)の制御も困難である(図1A)。

この問題を解決した好例として、Ottらの報告がある[4]。彼らは独自に合成したホスファニルホスホナートを用いた立体選択的交差McMurryカップリング(カルボニルクロスメタセシス反応*)を開発した(図1B)。このホスファニルホスホナートをアルデヒドと反応させホスファアルケンへ変換した後、別のアルデヒドと反応させ、熱力学的に安定なE-オレフィンを選択的に得た。しかし、その後の研究例も含め[5]一方のアルデヒドは芳香族アルデヒドのみ適用可能であった。

今回著者らは、この基質の限定性を打破するカルボニルクロスメタセシス反応の開発に挑んだ(図1C)。独自で見いだした、アルデヒドからの鉄カルベン生成法がこの開発の肝である[6]。この手法を用いてカルベノイドを生成後、リンイリドへと変換できれば[7]Wittig反応のように異なるカルボニル化合物と反応し、オレフィンが得られると考えた(図1C path A)。また著者らは、高井・内本オレフィン合成[8]を参考にクロム触媒を用いて、カルボニル化合物をgem-ジクロム化合物に変換後、カルボニル化合物と反応させオレフィンを与える別経路も考案した(図1C path B)。

図1. (A) McMurryカップリング (B) 以前のカルボニルクロスメタセシス反応の例 (C) 今回の研究

 

“Carbonyl Cross-Metathesis via Deoxygenative gem-di-Metal Catalysis”

Zhang, L.; Nagib, D. A. Nat. Chem. 2023, Advanced article. DOI: 10.1038/s41557-023-01333-8

論文著者の紹介

研究者:Lumin Zhang (张禄敏)

研究者の経歴:
2009–2013                  B.S., Sichuan Normal University
2013–2016                  M.Sc., Shanghai Institute of Organic Chemistry, China (Profs. Jun Yang and Ran Hong)
2017–2020                  Ph.D., Heidelberg University, Germany (Prof. A. Stephen K. Hashmi)
2020–2023                  Postdoc, Ohio State University, USA (Prof. David A. Nagib)
2023–                           Researcher, Shanghai Institute of Organic Chemistry, China

研究内容:ナイトレン、カルベン、ラジカルを含む新規反応開発

研究者:David A. Nagib

研究者の経歴:
2006                              B.S., Boston College, USA (Prof. Scott J. Miller)
2011                              Ph.D., Princeton University, USA (Prof. David W. C. MacMillan)
2011–2014                  NIH Postdoc, University of California, Berkeley, USA (Prof. F. Dean Toste)
2014–2020                  Assistant Professor, The Ohio State University, USA
2020–2022                  Associate Professor, The Ohio State University, USA
2022–                           Professor, The Ohio State University, USA

研究内容:ラジカル発生を伴うC–H, C–O官能基化

論文の概要

著者らは、カルベン→イリド経路(図1C path A)のカルボニルメタセシス反応を開発した(図2A 左)。脂肪族アルデヒド1Aに対しZnBr2、BzBrを作用させた後、LiCl、Znを加え、亜鉛カルベノイド3を得た。続けて、FeCl2、PPh3、アルデヒド1Bと反応させZ-オレフィン7Aa–7Ac を高立体選択的に得ることに成功した。推定反応機構を示す(図2B)1Aから生成した2に対し、亜鉛の挿入によりカルベノイド3となる。続いて、鉄とトランスメタル化、a脱離により安定なカルベン中間体5が生成する。5がPPh3とカルベン移動し、生じたリンイリド61Bが反応することでZ7Aを与える。

続いて、ジクロム化合物経路(図1C path B)から、E-オレフィンが選択的に得られることを見いだした(図2A右)。2に対して、1B、CrCl2、dtbbpy、LiI、TMSClおよび還元剤Mnを作用させることで、E-オレフィン7Ba–7Bcを高立体選択的に得た。1Aから生成したgem-ジクロム化合物10が、1Bと反応し7BとCr(III)11を与える。11は還元されCr(II)を再生する機構を提唱している(図2C)[9]

図2. (A) 基質適用範囲 (B) カルベン→イリド経路の推定反応機構 (C) ジクロム化合物経路の推定反応機構

以上、著者らは新規カルボニルクロスメタセシス反応の開発に成功した。基質の適用範囲が広がり、用いる金属触媒によりE/Z-オレフィンを作り分けられるため、より自在な炭素-炭素二重結合形成が可能である。
*カルボニルクロスメタセシス反応:クロスメタセシス反応は異なる化合物同士の分子間のメタセシス反応をいう。今回のカルボニルクロスメタセシス反応は、交差McMurryカップリング(カルボニル化合物の交差脱酸素型二量化)のことを著者の意向を踏まえて使用した。

参考文献

  1. Hoveyda, A. H.; Zhugralin, A. R. The Remarkable Metal-Catalysed Olefin Metathesis Reaction. Nature 2007, 450, 243–251. DOI: 1038/nature06351
  2. (a) Albright, H.; Davis, A. J.; Gomez-Lopez, J. L.; Vonesh, H. L.; Quach, P. K.; Lambert, T. H.; Schindler, C. S. Carbonyl–Olefin Metathesis. Chem. Rev.2021, 121, 9359–9406. DOI: 10.1021/acs.chemrev.0c01096 (b) Griffith, A. K.; Vanos, C. M.; Lambert, T. H. Organocatalytic Carbonyl–Olefin Metathesis. J. Am. Chem. Soc. 2012, 134, 18581–18584. DOI: 10.1021/ja309650u (c) Ludwig, J. R.; Zimmerman, P. M.; Gianino, J. B.; Schindler, C. S. Iron(III)-Catalysed Carbonyl–Olefin Metathesis. Nature 2016, 533, 374–379. DOI: 10.1038/nature17432 (d) Veluru Ramesh Naidu; Bah, J.; Franzén, J. Direct Organocatalytic Oxo-Metathesis, a trans-Selective Carbocation-Catalyzed Olefination of Aldehydes: Direct Organocatalytic Oxo-Metathesis. Eur. J. Org. Chem. 2015, 2015, 1834–1839. DOI: 10.1002/ejoc.201403651
  3. McMurry, J. E. Carbonyl-Coupling Reactions Using Low-Valent Titanium. Chem. Rev. 1989, 89, 1513–1524. DOI: 10.1021/cr00097a007
  4. Esfandiarfard, K.; Mai, J.; Ott, S. Unsymmetrical E-Alkenes from the Stereoselective Reductive Coupling of Two Aldehydes. J. Am. Chem. Soc. 2017, 139, 2940–2943. DOI: 10.1021/jacs.7b00428
  5. (a) Wei, W.; Dai, X.-J.; Wang, H.; Li, C.; Yang, X.; Li, C.-J. Ruthenium (II)-Catalyzed Olefination via Carbonyl Reductive Cross-Coupling. Chem. Sci. 2017, 8, 8193–8197. DOI: 10.1039/C7SC04207H (b) Wang, S.; Lokesh, N.; Hioe, J.; Gschwind, R. M.; König, B. Photoinitiated Carbonyl-Metathesis: Deoxygenative Reductive Olefination of Aromatic Aldehydes via Photoredox Catalysis. Chem. Sci. 2019, 10, 4580–4587. DOI: 10.1039/C9SC00711C
  6. (a)Wang, L.; Lear, J. M.; Rafferty, S. M.; Fosu, S. C.; Nagib, D. A. Ketyl Radical Reactivity via Atom Transfer Catalysis. Science 2018, 362, 225–229. DOI: 1126/science.aau1777 (b) Zhang, L.; DeMuynck, B. M.; Paneque, A. N.; Rutherford, J. E.; Nagib, D. A. Carbene Reactivity from Alkyl and Aryl Aldehydes. Science 2022, 377, 649–654. DOI: 10.1126/science.abo6443
  7. Aggarwal, V. K.; Fulton, J. R.; Sheldon, C. G.; de Vicente, J. Generation of Phosphoranes Derived from Phosphites. A New Class of Phosphorus Ylides Leading to High E Selectivity with Semi-Stabilizing Groups in Wittig Olefinations. J. Am. Chem. Soc. 2003, 125, 6034–6035. DOI: 10.1021/ja029573x
  8. Okazoe, T.; Takai, K.; Utimoto, K. (E)-Selective Olefination of Aldehydes by Means of gem-Dichromium Reagents Derived by Reduction of gem-Diiodoalkanes with Chromium(II) Chloride. J. Am. Chem. Soc. 1987, 109, 951–953. DOI: 10.1021/ja00237a081
  9. Fürstner, A.; Shi, N. Nozaki–Hiyama–Kishi Reactions Catalytic in Chromium. J. Am. Chem. Soc. 1996, 118, 12349–12357. DOI: 10.1021/ja9625236
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 外部の大学院に進学するメリット3選
  2. 初めてTOEICを受験してみた~学部生の挑戦記録~
  3. 【PR】Chem-Stationで記事を書いてみませんか?【スタ…
  4. ガラス器具の洗浄にも働き方改革を!
  5. プロトン共役電子移動を用いた半導体キャリア密度の精密制御
  6. 「ラブ・ケミストリー」の著者にインタビューしました。
  7. 生体深部イメージングに有効な近赤外発光分子の開発
  8. ナイロンに関する一騒動 ~ヘキサメチレンジアミン供給寸断

注目情報

ピックアップ記事

  1. 黒田チカ Chika Kuroda
  2. SHIPS uniform worksとのコラボ!話題の白衣「WHITECOAT」を試してみた
  3. Nature 創刊150周年記念シンポジウム:ポスター発表 募集中!
  4. UiO-66: 堅牢なジルコニウムクラスターの面心立方格子
  5. 親水性ひも状分子を疎水性空間に取り込むナノカプセル
  6. 高選択的な不斉触媒系を機械学習で予測する
  7. ゴム状硫黄は何色?
  8. ケミカルバイオロジー chemical biology
  9. だんだん柔らかくなるCOF!柔軟性の違いによる特性変化
  10. 細胞表面受容体の機能解析の新手法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP