[スポンサーリンク]

化学者のつぶやき

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

[スポンサーリンク]

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基が重要であり、cis-1,3-カルボホウ素化合物が選択的に得られる。

シクロヘキセンのcis-1,3-カルボホウ素化反応

cis-1,3-二置換シクロヘキサン骨格は生物活性物質に頻出し[1]の合成手法がこれまでに多く開発されてきた。ごく最近の例としては、1,3-二置換ベンゼンのcis-選択的水素化やシクロヘキサンカルボン酸のC–Hアリール化などが開発されており、注目度の高い報告例が後を絶たない[2]

一方で、シクロヘキセン(1)は安価で入手容易な化合物であり、シクロヘキサンを二官能基化してcis-1,3-二置換シクロヘキサン4が合成できれば有用な手法となる。しかし、一般的に遷移金属触媒を用いた1の二官能基化は1,2-二置換体を与える。例えば、BrownらはDMA中、Ni(cod)2触媒とNaOtAmyl存在下、1をベンジルクロリド(2)とB2pin2(3)と反応させ、cis-1,2-二置換シクロヘキサンを選択的に得た(図1A)[3]。今回、武漢大学のYin教授らは遷移金属触媒のチェーンウォーキング反応を用いれば、この1,2-選択性を打破し、1から4が得られると考えた。彼らはこれまで、ニッケル触媒を用いたアルケンの1,n-カルボホウ素化反応(n = 1,3,4…)を数例報告している(図1B)[4]。オレフィンのニッケルホウ素化の後、β-水素脱離と生じたNi–H種の配位挿入が連続的に起こり(チェーンウォーキング)、1,n-カルボホウ素化体が得られる。チェーンウォーキングの位置選択性は一般的に基質制御であり、ベンジル位やヘテロ原子のα位で停止して位置選択性が発現する。しかし、1ではこれらの“停止タグ”がなく、位置選択性、さらにはジアステレオ選択性が制御できるかは不明であった。

今回著者らは、チェーンウォーキングを用いることで、ニッケル触媒による1のcis-1,3-選択的カルボホウ素化が進行することを見いだした(図1C)。塩基にLiOMeを用いるのがcis-1,3-選択性発現の反応の鍵であり、他の塩基ではcis-1,2-二置換体が得られる。

図1. A) cis-1,2-位置選択的カルボホウ素化 B) 先行研究 C) 今回の研究

 

“Base-Modulated 1,3-Regio- and Stereoselective Carboboration of Cyclohexenes”

Kong, W.; Bao, Y.; Lu, L.; Han, Z.; Zhong, Y.; Zhang, R.; Li, Y.; Yin, G. Angew. Chem., Int. Ed. 2023, 62, e202308041.

DOI: 10.1002/anie.202308041

論文著者の紹介

研究者:Yuqiang Li (李玉强)

研究者の経歴:

2012–2016 B.S., Central South University, China
2016–2021 Ph.D., Wuhan University, China (Prof. Guoyin Yin)
2021–2022 Assistant Professor, Central South University, China
2022– Researcher, Shanghai Artificial Intelligence Laboratory, China 

研究内容:ニッケル触媒を用いた新規反応開発

 

研究者:Guoyin Yin (阴 国印)

研究者の経歴:

2002–2006 B.S., Northeast Agricultural University, China (Prof. Fei Ye and Prof. Ying Fu)
2006–2011 Ph.D., Shanghai Institute of Organic Chemistry, China (Prof. Guosheng Liu)
2011–2013 Postdoc, Technical University of Munich, Germany (Prof. Thorsten Bach)
2013–2014 Postdoc, RWTH Aachen University, Germany (Prof. Franziska Schoenebeck)
2014–2016 Postdoc, University of Delaware, USA (Prof. Donald A. Watson)
2016–2021 Researcher, Wuhan University, China
2021– Professor (untenured), Wuhan University, China

研究内容:遷移金属触媒を用いた二官能基化を含む新規反応開発

 

論文の概要

著者らはNMP中NiCl2·DME存在下、シクロヘキセン(1)に対し、有機ハロゲン化物2、B2pin2(3)、およびLiOMeを反応させ50 °Cで12時間撹拌することで、cis-1,3-二置換シクロヘキサン4が得られることを見いだした(図2A)。三級を除く様々なハロゲン化アルキルやブロモアレーンが本反応に適用でき、良好な収率で対応する4が得られた(4a–4c)。また、3位に置換基をもつシクロヘキセン5も反応に適用でき、cis-1,3-カルボホウ素化の後、酸化することで4dが収率よく得られた。

推定反応機構を以下に示す(図2B)。LiOMe存在下でNiII錯体と3のトランスメタル化が進行しNiII–Bpin(B)が生じる。Bが1に挿入してCとなり、チェーンウォーキング反応によりcis-1,3-ニッケルシクロヘキセン中間体(E)が生成する。その後、ラジカル種2′がEに反応してNiIII種(F)ができ、還元的脱離を経て生成物4が得られると同時にNiI種(G)を与える。Gは2と反応してアルキルラジカル2′とNiII(A)を再生する。DFT計算の結果、1,3-置換体が選択的に生じる理由は、中間体EがCや1,4-二置換体(H)よりも熱力学的に安定なためと示唆された(詳細は論文を参照)。

なお、本反応ではLiOMeを用いた場合のみ4が得られ、NaOMeや他の塩基を用いると低収率(20–30%)ながら1,2-二置換体6が優先して得られる(図2C)。この位置選択性の変化に関して、Ni–Bpin中間体の価数が関与すると結論づけられている。上述の通りLiOMeでは、二価のNiII–Bpinが生成する。それに対し、NaOMeを用いると、NiII種(A)が3と塩基によりNi0種(I)に還元され、NiII錯体との均化、続く3とのトランスメタル化を経てNiI-Bpin(K)が生成する[5]。Kの1への配位挿入後にはチェーンウォーキングは起こらず、1,2-二置換体の生成に至る(詳細は論文を参照)。

図2. A) 基質適応範囲 B) 推定反応機構 C) cis-1,2-カルボホウ素化

 

以上、著者らは安価なシクロヘキセンを出発物質とし、ニッケル触媒を用いたcis-1,3-カルボホウ素化反応を達成した。本反応は生物活性物質の簡便な合成の一助となることが期待される。 

 参考文献

  1. (a) Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752–6756. DOI: 10.1021/jm901241e (b) Smaligo, A. J.; Swain, Manisha.; Quintana, J. C.; Tan. M. F.; Kim. D. A.; Kwon, O. Hydrodealkenylative C(sp3)–C(sp2) Bond Fragmentation. Science 2019, 364, 681–685. DOI: 10.1126/science.aaw4212
  2. (a) Wiesenfeldt. M. P.; Nairoukh. Z.; Li. W.; Glorius. F. Hydrogenation of Fluoroarenes: Direct Access to All-cis-(Multi)fluorinated Cycloalkanes. Science 2017, 357, 908–912. DOI: 1126/science.aao0270 (b) Ling, L.; He, Y.; Zhang, X.; Luo, M.; Zeng, X. Hydrogenation of (Hetero)aryl Boronate Esters with a Cyclic (Alkyl)(amino)carbene–Rhodium Complex: Direct Access to cis-Substituted Borylated Cycloalkanes and Saturated Heterocycles. Angew. Chem., Int. Ed. 2019, 58, 6554–6558. DOI: 10.1002/anie.201811210 (c) Kang, G.; Strassfeld, D. A.; Sheng, T.; Chen, C.-Y.; Yu, J.-Q. Transannular C–H Functionalization of Cycloalkane Carboxylic Acids. Nature 2023, 618, 519–523. DOI: 10.1038/s41586-023-06000-z
  3. (a) Logan, K. M.; Sardini, D. W.; Brown, M. K. Nickel-Catalyzed Stereoselective Arylboration of Unactivated Alkenes. J. Am. Chem. Soc. 2018, 140, 159–162. DOI: 10.1021/jacs.7b12160 (b) Joung, S.; Bergmann, A. M.; Brown, M. K. Ni-Catalyzed 1,2-Benzylboration of 1,2-Disubstituted Unactivated Alkenes. Chem. Sci. 2019, 10, 10944–10947. DOI: 10.1039/C9SC04199K
  4. (a) Ding, C.; Ren, Y.; Sun, C.; Long, J.; Yin, G. Regio- and Stereoselective Alkylboration of Endocyclic Olefins Enabled by Nickel Catalysis. J. Am. Chem. Soc. 2021, 143, 20027–20034. DOI: 10.1021/jacs.1c09214 (b) Li, Y.; Wu, D.; Cheng, H.; Yin, G. Difunctionalization of Alkenes Involving Metal Migration. Angew. Chem., Int. Ed. 2020, 59, 7990–8003. DOI: 10.1002/anie.201913382 (c) Dhungana, R. K.; Sapkota, R. R.; Niroula, D.; Giri, R. Walking Metals: Catalytic Difunctionalization of Alkenes at Nonclassical Sites. Chem. Sci. 2020, 11, 9757–9774. DOI: 10.1039/D0SC03634J (d) Sun, C.; Li, Y.; Yin, G. Practical Synthesis of Chiral Allylboronates by Asymmetric 1,1‐Difunctionalization of Terminal Alkenes. Angew. Chem., Int. Ed. 2022, 61, e202209076. DOI: 10.1002/anie.202209076 (e) Li, Y.; Li, Y.; Shi, H.; Wei, H.; Li, H.; Funes-Ardoiz, I.; Yin, G. Modular Access to Substituted Cyclohexanes with Kinetic Stereocontrol. Science 2022, 376, 749–753. DOI: 10.1126/science.abn9124
  5. Lin, C.-Y.; Power, P. P. Complexes of Ni(I): A “Rare” Oxidation State of Growing Importance. Chem. Soc. Rev. 2017, 46, 5347–5399. DOI: 10.1039/C7CS00216E
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. スイスでポスドクはいかが?
  2. 水素移動を制御する精密な分子設計によるNHC触媒の高活性化
  3. 研究者1名からでも始められるMIの検討-スモールスタートに取り組…
  4. 【予告】ケムステ新コンテンツ「元素の基本と仕組み」
  5. 有機合成化学協会誌2020年8月号:E2212製法・ヘリセン・炭…
  6. 大学の講義を無料聴講! Academic Earth & You…
  7. レドックス反応場の論理的設計に向けて:酸化電位ギャップ(ΔEox…
  8. 有機合成化学協会誌2021年12月号:人工核酸・Post-com…

注目情報

ピックアップ記事

  1. 【書籍】機器分析ハンドブック1 有機・分光分析編
  2. 大型リチウムイオン電池及び関連商品・構成材料の開発【終了】
  3. 住友チタニウム、スポンジチタン生産能力を3割増強
  4. 二重可変領域抗体 Dual Variable Domain Immunoglobulin
  5. 光触媒ラジカル付加を鍵とするスポンギアンジテルペン型天然物の全合成
  6. 化学工場で膀胱がん、20人に…労災認定議論へ
  7. 陰イオン認識化学センサーの静水圧制御に成功~高選択的な分子検出法を確立~
  8. 越野 広雪 Hiroyuki Koshino
  9. 小学2年生が危険物取扱者甲種に合格!
  10. E. J. Corey からの手紙

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

ミトコンドリア内タンパク質を分解する標的タンパク質分解技術「mitoTPD」の開発

第 631 回のスポットライトリサーチは、東北大学大学院 生命科学研究科 修士課程2…

永木愛一郎 Aiichiro Nagaki

永木愛一郎(1973年1月23日-)は、日本の化学者である。現在北海道大学大学院理学研究院化学部…

11/16(土)Zoom開催 【10:30~博士課程×女性のキャリア】 【14:00~富士フイルム・レゾナック 女子学生のためのセミナー】

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。11/16…

KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発』 ~水・生体環境下で優れた機能を発揮させるための材料・表面・デバイス設計~

 開講期間 令和6年12月10日(火)、11日(水)詳細・お申し込みはこちら2 コースの…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP