[スポンサーリンク]

スポットライトリサーチ

超難溶性ポリマーを水溶化するナノカプセル

[スポンサーリンク]

第579回のスポットライトリサーチは東京工業大学 化学生命科学研究所 吉沢・澤田研究室の青山 慎治(あおやま しんじ)さんにお願いしました。

吉沢・澤田研では、超分子化学を基盤に、水中で活用できる “便利なナノ道具” の開発を目指して、「芳香環空間」に関する研究を行っています。具体的には、生体システムに匹敵する「ナノ空間」を人工的に作製することで、合成化学や材料化学、物性化学、分析化学などの分野での新展開を目指しています。さらに「ペプチド空間」に関する研究も行っており、剛直な”合成パーツ”と柔軟な”生体パーツ”の両方を活用した新空間化学に挑戦しています。

本プレスリリースの研究内容は、ポリマーの効率的な水溶化についてです。本研究グループでは、水や種々の有機溶媒にも溶けない超難溶性ポリマーを水溶化する新手法を開発しました。水溶化によりこれまで困難であったポリマーの詳細な構造解析と物性評価を可能にし、さらに超難溶性ポリマーの薄層フィルムの簡便な作製にも成功しました。この研究成果は、「Angewandte Chemie International Edition」誌に掲載され、またプレスリリースにも成果の概要が公開されています。

Facile Processing of Unsubstituted π-Conjugated Aromatic Polymers through Water-solubilization Using Aromatic Micelles

Shinji Aoyama, Lorenzo Catti*, Michito Yoshizawa*

Angew. Chem. Int. Ed. 202362, e202306399.

DOI:doi.org/10.1002/anie.202306399

指導教員のロレンツォ カッティ 助教より青山さんについてコメントを頂戴いたしました!

青山さんは2021年に吉沢・澤田研究室に加わってから、私が最初に指導をすることになった学生です。彼の研究の目的は、不溶性高分子の水溶液処理への私たちのオリジナル芳香族ミセルの応用を確立することでした。高分子を扱った経験はありませんでしたが、青山さんはすぐに高分子の水溶化を達成し、原子間力顕微鏡を使った可視化もマスターしました。可溶化したポリマーを処理するのに苦労した後、使い捨てのプラスチック製注射器を使った手作りの濾過装置を使って、ようやくサブミクロンの薄膜を形成することに成功しました。青山さんの成功の根底には、化学に対する好奇心、自主的に新しいアイデアを生み出す能力、一貫した努力、そして他の研究者との熱心な議論があります。この2年間の彼の努力は、ポスター賞や博士フェローシップ取得という形で報われ、彼は徐々に私たちのグループの中心的なメンバーの一人となっています。これからも彼と一緒に仕事をし、新しいエキサイティングな材料応用を一緒に探求できることを楽しみにしています!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

様々なポリマーの中でも、芳香環骨格を主軸に持つポリマーは、高機能性材料の原料として最近注目されています。ですが、このような芳香環ポリマーは、その高い剛直性と強い凝集性から、水や有機溶媒に全く溶解しません。これまでの可溶化の手法は主に、ポリマー骨格への大量の側鎖(=置換基)導入に限定されており、側鎖の導入が困難な場合や導入によってポリマー物性が変化する場合がありました。

図1. a) 本研究の超難溶性ポリマーの水溶化法、b) V型両親媒性分子 c) 調査した芳香環ポリマー

本研究では、独自に開発したV型両親媒性分子(図1b)を超難溶性の芳香環ポリマー(図1c)と混合することで、ナノカプセル化を介してポリマーの効率的な水溶化に初めて成功しました(図1a)。また可溶化を実現したことで、これまで不可能であったポリマーの構造や物性を解明できました。本手法の最大の特徴は、カプセルからの放出で、芳香環ポリマーの薄層フィルムが簡便に作製できる点にあります(図2)。水を溶媒として、煩雑な側鎖導入を必要とせず、使用したV型両親媒性分子も再利用可能な、ポリマーの新加工法を開発しました。

図2. 芳香環ミセルからの放出による薄層フィルム作製

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

自分なりに工夫したところは、用いる高分子の選定です。

本テーマを始めた時点では、「芳香環ミセルを用いて高分子を水溶化する」ことは決まっていましたが、どの種類のポリマーを選択するかはある程度任されていました。芳香環ミセルとの相互作用を考慮して、主鎖に芳香環を含むポリマー(ポリチオフェンやポリフルオレンなど)がよいと考えましたが、不溶性で重合度が小さく、短い長さのため、詳細な解析や自立型薄膜作製が難しいといった点で悩んでいました。

芳香環ポリマーに関して文献調査をしていく中で、ヘテロ原子が導入された芳香環ポリマー(PBOやBBL)を知りました。これらの高分子はヘテロ原子のプロトン化により強酸存在下のみで可溶化でき、長さも数百nmサイズであることから、本研究に適していると思い、今回注目しました。その結果、AFM測定によるポリマー解析や自立型の薄膜作製へとなんとか展開することができました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

難しかったところは、AFMおよびSEM測定でした。当研究室でその機器に精通した人はおらず、一から測定を行いました。ビギナーズラック?などはなく最初から失敗続き(なにも見えないまたは凝集体の観測など)でしたが、測定原理を理解し、複数ある測定パラメータを変え、基板に滴下する方法を最適化することで、ようやく再現性よく目的とするポリマー像を得ることができました。

うまく実験・測定できないときは感情的になりがちですが、その原因を冷静に考え、仮説を立てて地道に研究を進めることが大事だと改めて実感しました。

Q4. 将来は化学とどう関わっていきたいですか?

学部生のときは、有機合成化学を用いて新反応を開発する研究室(農工大齊藤研)に所属していたこともあり、研究内容自体はもちろん好きでしたが、自身の興味や知識は狭い範囲に留まっていたと思います(反応機構の→↓→ばかり書いていました)。

吉沢・澤田研に修士課程より在籍してから、異なる研究内容やバックグラウンドをもつ先生方・学生や技術職員の方々と交流する機会に多く恵まれ、新しい知識や興味を沢山増やすことができました。

今後も、化学はもちろんですが、分野外の新しい知識を吸収しつつ、数多くの新しい「モノ」や「技術」を協同して生み出していければと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

ここまでお読みいただき、ありがとうございました。日夜熟読しているChem-Stationのスポットライトリサーチに取り上げていただいたことに驚きつつ、今原稿を作成しています。日々の積み上げてきた成果を論文という形で公表することで、多くの方々に届き、その反響をいただくことが「新しいことを発見すること」と等しく嬉しいことだと個人的に感じました。

今現在、多次元の不溶性高分子の水溶化やそれを利用した面白い現象を発見しつつあります。近々発表できるように、日々研究していきます。

最後になりますが、本研究を行うにあたり、多大なご指導を頂きました吉沢 道人教授、Lorenzo Catti助教、研究室メンバー、技術職員の皆様にこの場を借りて、感謝申し上げます。また、このような機会を頂きましたChem-Stationのスタッフの皆様にも深く感謝申し上げます。

研究者の略歴

名前:青山 慎治(あおやま しんじ)

所属:東京工業大学 物質理工学院 吉沢・澤田研究室

研究テーマ:芳香環ミセルを活用した水中での難溶性高分子の捕捉と合成

略歴:

2021年3月 東京農工大学 工学部 応用分子化学科 卒業

2023年3月 東京工業大学 物質理工学院 応用化学系 修士課程修了

2023年4月 同博士課程進学

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 製品開発職を検討する上でおさえたい3つのポイント
  2. KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発…
  3. 研究者1名からでも始められるMIの検討-スモールスタートに取り組…
  4. 芳香族ニトロ化合物のクロスカップリング反応
  5. CEMS Topical Meeting Online 機能性材…
  6. 無保護アミン類の直接的合成
  7. 「進化分子工学によってウイルス起源を再現する」ETH Zuric…
  8. 【解ければ化学者】オリーブオイルの主成分の素はどれ?【脂肪の素っ…

注目情報

ピックアップ記事

  1. 秋吉一成 Akiyoshi Kazunari
  2. プロドラッグの活性化をジグリシンが助ける
  3. 理系ライターは研究紹介記事をどうやって書いているか
  4. “マブ” “ナブ” “チニブ” とかのはなし
  5. 調光機能付きコンタクトレンズが登場!光に合わせてレンズの色が変化し、目に入る光の量を自動で調節
  6. SciFinder Future Leaders in Chemistry 2015に参加しよう!
  7. アスパルテーム /aspartame
  8. 11年ぶり日本開催、国際化学五輪プレイベントを3月に
  9. ポンコツ博士の海外奮闘録XXIII ~博士の危険地帯サバイバル 薬物編~
  10. 日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 1

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年11月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP