[スポンサーリンク]

化学者のつぶやき

TMSClを使ってチタンを再生!チタン触媒を用いたケトン合成

[スポンサーリンク]

カルボン酸誘導体とgem-ジハロアルカンからのチタン触媒を用いたケトンの合成法が報告された。オレフィン化と続く求電子置換によりさまざまな官能基をもつケトンへの迅速な変換が可能となった。

カルボン酸誘導体を用いるケトン合成

ケトンは天然物や医薬品などに頻出するのに加え、合成中間体としての汎用性も高い有機合成の華形と言える官能基である。Weinrebケトン合成や、Friedel–Craftsアシル化などケトン合成の常法に加え[1]、近年では遷移金属触媒存在下、酸無水物、カルボン酸クロリドやイミド、フェニルエステルと有機ハロゲン化物または有機金属試薬とのクロスカップリング反応によるケトン合成も複数報告された(図1A)[2]。しかし、カルボン酸やアルキルエステル、アミドからの触媒的なケトン合成は依然高難度の課題であった。

一方で、チタンからなるTebbe試薬Petasis試薬はカルボン酸誘導体のメチレン化試薬として広く用いられる(図1B)[3]。また、高井らや武田らの報告では、gem-ジハロアルカンやチオアセタールを用いて発生させた低原子価有機チタン種によるカルボン酸誘導体からの置換アルケンの合成が達成された[4]。これらの手法は不活性なエステルやアミドのオレフィン化を可能とした優れた手法だが、いずれも化学量論量のチタン試薬を要する。反応後に生じる安定なチタンオキソ種を反応性の高い低原子価チタン錯体に再生することが、チタンを触媒量に減ずる鍵となる。

今回西湖大学のWang助教授らは、マグネシウムや亜鉛還元剤およびTMSCl存在下、触媒量のチタンでカルボン酸誘導体とgem-ジハロアルカンからのオレフィン合成法を開発した(図1C)。そして、生成したオレフィンを酸や求電子的ハロゲン化剤などで処理することで種々のケトンへと導けることを示し、カルボン酸やアルキルエステル、アミドから触媒的なケトン合成に成功した。TMSClを用いて反応後に生じるチタンオキソ種の酸素原子を塩素原子に置換し、チタン触媒を再生することでチタンの触媒的利用が可能になった。

図1. (A) 金属触媒を用いたケトン合成 (B) チタンを用いたカルボン酸誘導体のオレフィン化 (C) 今回の反応

 

“Ti-Catalyzed Modular Ketone Synthesis from Carboxylic Derivatives and gem-Dihaloalkanes”

Ni, J.; Xia, X.; Gu, D.; Wang, Z. J. Am. Chem. Soc. 2023, 145, 14884–14893.

DOI: 10.1021/jacs.3c04009 

 

論文著者の紹介

研究者:Zhaobin Wang (王兆彬)

研究者の経歴:

2011 B.S., Nanjing University, China (Prof. Leyong Wang)

2015 Ph. D., Hong Kong University of Science and Technology, China (Prof. Jianwei Sun)

2016–2019 Postdoc, California Institute of Technology, USA (Prof. Gregory C. Fu)

2019– Assistant Professor, Westlake University, China

研究内容:遷移金属触媒を用いた反応開発、ラジカル-極性クロスオーバー反応を用いた不斉反応の開発

論文の概要

THF中触媒量のCp2TiCl2とマグネシウム粉末、TMSCl存在下、カルボン酸1gem-ジクロロアルカン2を80 °Cで反応させた後、塩酸で処理することでケトン3が得られることを見いだした(図2A)。本反応の基質適用範囲は広く、嵩高い置換基を有するものや安息香酸、a,b-不飽和カルボン酸など、さまざまなカルボン酸に対して適用可能であった(3a–c)。また、α-キラルカルボン酸を用いても立体化学を損なうことなくa-キラルケトン(3d)が得られる。gem-ジクロロアルカンに関しても、ヘテロ環や内部アルケンを有するものなどさまざまな基質が適用できた(3e, 3f)。本反応は亜鉛粉末を還元剤にしても進行し、この場合は、gem-ジブロモアルカン5を用いるとジメチルアミドやメチルエステルを中程度から高い収率でケトン6に変換できる(図2B)。

本反応で、酸処理の代わりに種々の求電子剤を作用させればα-官能基化ケトンが得られる(図2C)。すなわち、カルボン酸とgem-ジクロロアルカンを図2Aの条件下反応させた後、生じたシリルエノールエーテル粗生成物にSelectfluor®、NCSを作用させれば対応するa-ハロケトン7, 8が、Togni試薬を用いればa-トリフルオロメチルケトン9が合成できた。

チタンを触媒量にできた鍵はMgやZnとTMSClを併用したことである。この点に関する機構解明実験はなされていないものの、TMSClにより反応で生じたチタンオキソ種(Cp2TiO)がCp2Ti(IV)Cl2へと再生されることでチタンの触媒的利用が可能となったと提唱されている(図2D; その他の機構解明実験は論文参照)。

図2. (A) カルボン酸からのケトン合成 (B) 亜鉛還元剤を用いるアミドやエステルからのケトン合成 (C) 求電子剤による-官能基化 (D) チタン触媒の再生機構

以上、チタン触媒を用いたカルボン酸誘導体からのケトン合成が開発された。多様なカルボン酸誘導体を利用できることから、有機合成化学において幅広い有用性が期待される。

参考文献

  1. (a) Nahm, S.; Weinreb, S. M. N-Methoxy-n-Methylamides as Effective Acylating Agents. Tetrahedron Let. 1981, 22, 3815–3818. DOI: 1016/S0040-4039(01)91316-4 (b) Balasubramaniam, S.; Aidhen, I. The Growing Synthetic Utility of the Weinreb Amide. Synthesis 2008, 2008, 3707–3738. DOI: 10.1055/s-0028-1083226 (c) Sartori, G.; Maggi, R. Use of Solid Catalysts in Friedel−Crafts Acylation Reactions. Chem. Rev. 2006, 106, 1077–1104. DOI: 10.1021/cr040695c
  2. (a) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Catalytic Asymmetric Reductive Acyl Cross-Coupling: Synthesis of Enantioenriched Acyclic α,α-Disubstituted Ketones. Am. Chem. Soc. 2013, 135, 7442–7445. DOI: 10.1021/ja402922w (b) Yin, H.; Zhao, C.; You, H.; Lin, K.; Gong, H. Mild Ketone Formation via Ni-Catalyzed Reductive Coupling of Unactivated Alkyl Halides with Acid Anhydrides. Chem. Commun. 2012, 48, 7034. DOI: 10.1039/c2cc33232a (c) Ben Halima, T.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y.-F.; Houk, K. N.; Newman, S. G. Palladium-Catalyzed Suzuki–Miyaura Coupling of Aryl Esters. J. Am. Chem. Soc. 2017, 139, 1311–1318. DOI: 10.1021/jacs.6b12329 (d) Simmons, B. J.; Weires, N. A.; Dander, J. E.; Garg, N. K. Nickel-Catalyzed Alkylation of Amide Derivatives. ACS Catal. 2016, 6, 3176–3179. DOI: 10.1021/acscatal.6b00793 (e) Takise, R.; Muto, K.; Yamaguchi, J. Cross-Coupling of Aromatic Esters and Amides. Chem. Soc. Rev. 2017, 46, 5864–5888. DOI: 10.1039/C7CS00182G
  3. (a) Manßen, M.; Schafer, L. L. Titanium Catalysis for the Synthesis of Fine Chemicals – Development and Trends. Soc. Rev. 2020, 49, 6947–6994. DOI: 10.1039/D0CS00229A (b) McMurry, J. E.; Fleming, M. P. New Method for the Reductive Coupling of Carbonyls to Olefins. Synthesis of b-Carotene. J. Am. Chem. Soc. 1974, 96, 4708–4709. DOI; 10.1021/ja00821a076 (c) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. Olefin Homologation with Titanium Methylene Compounds. J. Am. Chem. Soc. 1978, 100, 3611–3613. DOI: 10.1021/ja00479a061 (d) Petasis, N. A.; Bzowej, E. I. Titanium-Mediated Carbonyl Olefinations. 1. Methylenations of Carbonyl Compounds with Dimethyltitanocene. J. Am. Chem. Soc. 1990, 112, 6392–6394. DOI: 10.1021/ja00173a035
  4. (a) Okazoe, T.; Takai, K.; Oshima, K.; Utimoto, K. Alkylidenation of Ester Carbonyl Groups by Means of a Reagent Derived from RCHBr2, Zn, TiCl4, and TMEDA. Stereoselective Preparation of (Z)-Alkenyl Ethers. Org. Chem. 1987, 52, 4410–4412. DOI: 10.1021/jo00228a055 (b) Horikawa, Y.; Watanabe, M.; Fujiwara, T.; Takeda, T. New Carbonyl Olefination Using Thioacetals. J. Am. Chem. Soc. 1997, 119, 1127–1128. DOI: 10.1021/ja962240d
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンス…
  2. 不活性アルケンの分子間[2+2]環化付加反応
  3. 化学エンターテイメント小説第3弾!『ラブ・リプレイ』
  4. Lectureship Award MBLA 10周年記念特別講…
  5. カーボン系固体酸触媒
  6. MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性…
  7. 重水は甘い!?
  8. アリルC(Sp3)-H結合の直接的ヘテロアリール化

注目情報

ピックアップ記事

  1. 始めよう!3Dプリンターを使った実験器具DIY:3D CADを使った設計編その2
  2. (S)-5-(ピロリジン-2-イル)-1H-テトラゾール:(S)-5-(Pyrrolidin-2-yl)-1H-tetrazole
  3. Brønsted酸触媒とヒドロシランによるシラFriedel-Crafts反応
  4. エーテル分子はすみっこがお好き?-電場・磁場・光でナノ空間における二元系溶媒の不均一化を知る-
  5. 諸熊 奎治 Keiji Morokuma
  6. スポットライトリサーチムービー:動画であなたの研究を紹介します
  7. 「転職活動がうまくいかない」と思ったらやるべきリフレクションとは?
  8. 水口 賢司 Kenji Mizuguchi
  9. シンガポールへ行ってきた:NTUとNUS化学科訪問
  10. ビス(ヘキサフルオロアセチルアセトナト)銅(II)水和物 : Bis(hexafluoroacetylacetonato)copper(II) Hydrate

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

フッ素が実現する高効率なレアメタルフリー水電解酸素生成触媒

第638回のスポットライトリサーチは、東京工業大学(現 東京科学大学) 理学院化学系 (前田研究室)…

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー