[スポンサーリンク]

化学者のつぶやき

TMSClを使ってチタンを再生!チタン触媒を用いたケトン合成

[スポンサーリンク]

カルボン酸誘導体とgem-ジハロアルカンからのチタン触媒を用いたケトンの合成法が報告された。オレフィン化と続く求電子置換によりさまざまな官能基をもつケトンへの迅速な変換が可能となった。

カルボン酸誘導体を用いるケトン合成

ケトンは天然物や医薬品などに頻出するのに加え、合成中間体としての汎用性も高い有機合成の華形と言える官能基である。Weinrebケトン合成や、Friedel–Craftsアシル化などケトン合成の常法に加え[1]、近年では遷移金属触媒存在下、酸無水物、カルボン酸クロリドやイミド、フェニルエステルと有機ハロゲン化物または有機金属試薬とのクロスカップリング反応によるケトン合成も複数報告された(図1A)[2]。しかし、カルボン酸やアルキルエステル、アミドからの触媒的なケトン合成は依然高難度の課題であった。

一方で、チタンからなるTebbe試薬Petasis試薬はカルボン酸誘導体のメチレン化試薬として広く用いられる(図1B)[3]。また、高井らや武田らの報告では、gem-ジハロアルカンやチオアセタールを用いて発生させた低原子価有機チタン種によるカルボン酸誘導体からの置換アルケンの合成が達成された[4]。これらの手法は不活性なエステルやアミドのオレフィン化を可能とした優れた手法だが、いずれも化学量論量のチタン試薬を要する。反応後に生じる安定なチタンオキソ種を反応性の高い低原子価チタン錯体に再生することが、チタンを触媒量に減ずる鍵となる。

今回西湖大学のWang助教授らは、マグネシウムや亜鉛還元剤およびTMSCl存在下、触媒量のチタンでカルボン酸誘導体とgem-ジハロアルカンからのオレフィン合成法を開発した(図1C)。そして、生成したオレフィンを酸や求電子的ハロゲン化剤などで処理することで種々のケトンへと導けることを示し、カルボン酸やアルキルエステル、アミドから触媒的なケトン合成に成功した。TMSClを用いて反応後に生じるチタンオキソ種の酸素原子を塩素原子に置換し、チタン触媒を再生することでチタンの触媒的利用が可能になった。

図1. (A) 金属触媒を用いたケトン合成 (B) チタンを用いたカルボン酸誘導体のオレフィン化 (C) 今回の反応

 

“Ti-Catalyzed Modular Ketone Synthesis from Carboxylic Derivatives and gem-Dihaloalkanes”

Ni, J.; Xia, X.; Gu, D.; Wang, Z. J. Am. Chem. Soc. 2023, 145, 14884–14893.

DOI: 10.1021/jacs.3c04009 

 

論文著者の紹介

研究者:Zhaobin Wang (王兆彬)

研究者の経歴:

2011 B.S., Nanjing University, China (Prof. Leyong Wang)

2015 Ph. D., Hong Kong University of Science and Technology, China (Prof. Jianwei Sun)

2016–2019 Postdoc, California Institute of Technology, USA (Prof. Gregory C. Fu)

2019– Assistant Professor, Westlake University, China

研究内容:遷移金属触媒を用いた反応開発、ラジカル-極性クロスオーバー反応を用いた不斉反応の開発

論文の概要

THF中触媒量のCp2TiCl2とマグネシウム粉末、TMSCl存在下、カルボン酸1gem-ジクロロアルカン2を80 °Cで反応させた後、塩酸で処理することでケトン3が得られることを見いだした(図2A)。本反応の基質適用範囲は広く、嵩高い置換基を有するものや安息香酸、a,b-不飽和カルボン酸など、さまざまなカルボン酸に対して適用可能であった(3a–c)。また、α-キラルカルボン酸を用いても立体化学を損なうことなくa-キラルケトン(3d)が得られる。gem-ジクロロアルカンに関しても、ヘテロ環や内部アルケンを有するものなどさまざまな基質が適用できた(3e, 3f)。本反応は亜鉛粉末を還元剤にしても進行し、この場合は、gem-ジブロモアルカン5を用いるとジメチルアミドやメチルエステルを中程度から高い収率でケトン6に変換できる(図2B)。

本反応で、酸処理の代わりに種々の求電子剤を作用させればα-官能基化ケトンが得られる(図2C)。すなわち、カルボン酸とgem-ジクロロアルカンを図2Aの条件下反応させた後、生じたシリルエノールエーテル粗生成物にSelectfluor®、NCSを作用させれば対応するa-ハロケトン7, 8が、Togni試薬を用いればa-トリフルオロメチルケトン9が合成できた。

チタンを触媒量にできた鍵はMgやZnとTMSClを併用したことである。この点に関する機構解明実験はなされていないものの、TMSClにより反応で生じたチタンオキソ種(Cp2TiO)がCp2Ti(IV)Cl2へと再生されることでチタンの触媒的利用が可能となったと提唱されている(図2D; その他の機構解明実験は論文参照)。

図2. (A) カルボン酸からのケトン合成 (B) 亜鉛還元剤を用いるアミドやエステルからのケトン合成 (C) 求電子剤による-官能基化 (D) チタン触媒の再生機構

以上、チタン触媒を用いたカルボン酸誘導体からのケトン合成が開発された。多様なカルボン酸誘導体を利用できることから、有機合成化学において幅広い有用性が期待される。

参考文献

  1. (a) Nahm, S.; Weinreb, S. M. N-Methoxy-n-Methylamides as Effective Acylating Agents. Tetrahedron Let. 1981, 22, 3815–3818. DOI: 1016/S0040-4039(01)91316-4 (b) Balasubramaniam, S.; Aidhen, I. The Growing Synthetic Utility of the Weinreb Amide. Synthesis 2008, 2008, 3707–3738. DOI: 10.1055/s-0028-1083226 (c) Sartori, G.; Maggi, R. Use of Solid Catalysts in Friedel−Crafts Acylation Reactions. Chem. Rev. 2006, 106, 1077–1104. DOI: 10.1021/cr040695c
  2. (a) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Catalytic Asymmetric Reductive Acyl Cross-Coupling: Synthesis of Enantioenriched Acyclic α,α-Disubstituted Ketones. Am. Chem. Soc. 2013, 135, 7442–7445. DOI: 10.1021/ja402922w (b) Yin, H.; Zhao, C.; You, H.; Lin, K.; Gong, H. Mild Ketone Formation via Ni-Catalyzed Reductive Coupling of Unactivated Alkyl Halides with Acid Anhydrides. Chem. Commun. 2012, 48, 7034. DOI: 10.1039/c2cc33232a (c) Ben Halima, T.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y.-F.; Houk, K. N.; Newman, S. G. Palladium-Catalyzed Suzuki–Miyaura Coupling of Aryl Esters. J. Am. Chem. Soc. 2017, 139, 1311–1318. DOI: 10.1021/jacs.6b12329 (d) Simmons, B. J.; Weires, N. A.; Dander, J. E.; Garg, N. K. Nickel-Catalyzed Alkylation of Amide Derivatives. ACS Catal. 2016, 6, 3176–3179. DOI: 10.1021/acscatal.6b00793 (e) Takise, R.; Muto, K.; Yamaguchi, J. Cross-Coupling of Aromatic Esters and Amides. Chem. Soc. Rev. 2017, 46, 5864–5888. DOI: 10.1039/C7CS00182G
  3. (a) Manßen, M.; Schafer, L. L. Titanium Catalysis for the Synthesis of Fine Chemicals – Development and Trends. Soc. Rev. 2020, 49, 6947–6994. DOI: 10.1039/D0CS00229A (b) McMurry, J. E.; Fleming, M. P. New Method for the Reductive Coupling of Carbonyls to Olefins. Synthesis of b-Carotene. J. Am. Chem. Soc. 1974, 96, 4708–4709. DOI; 10.1021/ja00821a076 (c) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. Olefin Homologation with Titanium Methylene Compounds. J. Am. Chem. Soc. 1978, 100, 3611–3613. DOI: 10.1021/ja00479a061 (d) Petasis, N. A.; Bzowej, E. I. Titanium-Mediated Carbonyl Olefinations. 1. Methylenations of Carbonyl Compounds with Dimethyltitanocene. J. Am. Chem. Soc. 1990, 112, 6392–6394. DOI: 10.1021/ja00173a035
  4. (a) Okazoe, T.; Takai, K.; Oshima, K.; Utimoto, K. Alkylidenation of Ester Carbonyl Groups by Means of a Reagent Derived from RCHBr2, Zn, TiCl4, and TMEDA. Stereoselective Preparation of (Z)-Alkenyl Ethers. Org. Chem. 1987, 52, 4410–4412. DOI: 10.1021/jo00228a055 (b) Horikawa, Y.; Watanabe, M.; Fujiwara, T.; Takeda, T. New Carbonyl Olefination Using Thioacetals. J. Am. Chem. Soc. 1997, 119, 1127–1128. DOI: 10.1021/ja962240d
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. アメリカ大学院留学:卒業後の進路とインダストリー就活(1)
  2. η6配位アルキルベンゼンで全炭素(3+2)環化付加
  3. ”がんのメカニズムに迫る” 細胞増殖因子とシグナル学術セミナー …
  4. 第46回ケムステVシンポ「メゾヒエラルキーの物質科学」を開催しま…
  5. 高分子と高分子の反応も冷やして加速する
  6. ⽔を嫌う CH₃-基が⽔をトラップする︖⽣体浸透圧調整物質 TM…
  7. ルーブ・ゴールドバーグ反応 その1
  8. 2007年度イグノーベル賞決定

注目情報

ピックアップ記事

  1. スルホンアミドからスルホンアミドを合成する
  2. マテリアルズ・インフォマティクスにおける分子生成の応用 ー新しい天然有機化合物の生成を目指すー
  3. 2010年日本化学会各賞発表-学術賞-
  4. 理系の海外大学院・研究留学記
  5. 第三級アミン酸化の従来型選択性を打破~Auナノ粒子触媒上での協奏的二電子一プロトン移動~
  6. 活性酸素を効率よく安定に生成できる分子光触媒 〜ポルフィリンと分子状タングステン酸化物を複合化〜
  7. 陽電子放射断層撮影 Positron Emmision Tomography
  8. カセロネス鉱山
  9. マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-
  10. ノーベル賞いろいろ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

城﨑 由紀 Yuki SHIROSAKI

城﨑 由紀(Yuki SHIROSAKI)は、生体無機材料を専門とする日本の化学者である。2025年…

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

フッ素が実現する高効率なレアメタルフリー水電解酸素生成触媒

第638回のスポットライトリサーチは、東京工業大学(現 東京科学大学) 理学院化学系 (前田研究室)…

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー