[スポンサーリンク]

化学者のつぶやき

ハワイの海洋天然物(+)-Waixenicin Aの不斉全合成

[スポンサーリンク]

強力かつTRPM7特異的阻害剤である(+)-waixenicin Aの初の全合成が報告された。ジアステレオ選択的な1,4付加による不斉点の構築と分子内アルキル化による9員環形成が本合成の特徴である。

(+)-Waixenicin Aの全合成

(+)-Waixenicin A (1)は1984年にScheuerとClardyによってソフトコーラルSarcothelia edmondsoniから単離された[1]。細胞増殖や細胞死に関与し、がんなどの薬剤標的として注目される一過性受容体電位メラスタチン7(TRPM7)チャネルの特異的阻害剤として作用する[2]。また、1は海洋性ジテルペノイドであるキセニアジテルペノイドの一種であり、合成化学的にも魅力のある複雑な多環式骨格(トランス縮合オキサビシクロ[7.4.0]トリデカン)をもつ。これまで、5つのキセニアジテルペノイド2–6の全合成が達成されている(図1A)[3]。しかし、4つの不斉中心に加え、酸に不安定なエノールアセタールと塩基に不安定な2つのアリルアセテートをもつ1の合成は困難を極め、単離から約40年もの間、全合成の報告はなかった。

Magauerらは1の合成に挑戦し、以下の逆合成解析を提案した(図1B)。まず、17への側鎖の導入により導けると考えた。7のトリフラート基は側鎖導入の足がかりとなるだけでなく、エノールアセタールの安定性を向上させると期待した。7の(E)-オレフィンを含む9員環はアリルブロミド9の分子内アルキル化により構築できると考えた。910のHWE反応と、チオアセタールの除去により生じるアルデヒドとTMSEエステルのアルドール反応により合成できるとした。10はエノン11へのジチアン12のジアステレオ選択的な1,4付加とヨウ化物13から合成できると考えた。

図1. (A) 全合成が達成されたキセニアジテルペノイド (B) 逆合成解析

 

“Total Syntheses of (+)-Waixenicin A, (+)-9-Deacetoxy-14,15-Deepoxyxeniculin,and (−)-Xeniafaraunol A”

Steinborn, C.; Huber, T.; Lichtenegger, J.; Plangger, I.; Wurst, K.; Magauer, T.J. Am. Chem. Soc. 2023, 145, 11811–11817.

DOI: 10.1021/jacs.3c03366

論文著者の紹介

研究者:Thomas Magauer

研究者の経歴:

2002–2007 B.S., University of Vienna, Austria (Prof. J. Mulzer)

2007–2009 Ph. D., University of Vienna, Austria (Prof. J. Mulzer)

2010–2012 Postdoc, Harvard University, USA (Prof. A. G. Myers)

2012–2017 Assistant Professor, LMU München, Germany

2017– Professor, University of Innsbruck, Austria

研究内容:天然物合成、有機合成化学、生物化学

論文の概要

著者らはまず、フルフリルアルコールから3工程で合成できるキラルなエノン11へのジチアン12の1,4付加により生じるエノラートに13を作用させ、ケトン14を単一のジアステレオマーとして得た。この際、溶媒にHMPAを添加することで12の1,2付加が抑制された。15のチオアセタールの除去、生じたアルデヒドとTMSEエステルとのアルドール反応により16を合成した。環化前駆体9を炭酸カリウムで処理すると環化が進行し、TASFを用いた脱炭酸により(E)-オレフィンを含む9員環形成に成功したが、1717’の混合物を与えた。これらのケトンをメチレン化すれば1の主骨格構築となるが、常法では反応は進行しなかった。最終的にZrCl4を用いた高井–ロンバード法が最適であり、C7/C8アルケンのE/Z異性化もなく、18を与えた。なお本条件において、1717’の混合物を用いても18が主生成物として得られたことは大変興味深い(収率83%)。得られたトリフラート18のホルミル化(19)、PMB基の除去、アセチル化により20a/bとした。立体化学の異なる20aはけん化とアセチル化を繰り返すことで所望の20bへと変換できる。その後、20bのBrownアリルホウ素化[4]およびアセチル化、酢酸メタリルとのオレフィンメタセシスにより1の合成を達成した。また、アルデヒド20bのプレニル化と続くアセチル化により、9-deacetoxy-14,15-deepoxyxeniculin(21)の初の全合成を達成した。さらに、21を炭酸カリウムで処理すると急速に転位が進行しxeniafaraunol A(22)が得られた。

図2. (A) waixenicin Aの合成 (B) 9-deacetoxy-14,15-deepoxyxeniculinおよびxeniafaraunol Aの合成

 

以上、ハワイ産の海洋天然物が単離から約40年かけてついに全合成された。化合物の不安定性を温和な反応条件選択と適切な化学変換で乗り越えた、まさに合成の匠のお仕事である。

参考文献

  1. Coval, S. J.; Scheuer, P. J.; Matsumoto, G. K.; Clardy, J. Two New Xenicin Diterpenoids from the Octocoral Anthelia Edmondsoni. Tetrahedron 1984, 40, 3823–3828. DOI: 1016/S0040-4020(01)88813-X
  2. (a) Sun, H.-S.; Horgen, F. D.; Romo, D.; Hull, K. G.; Kiledal, S. A.; Fleig, A.; Feng, Z.-P. Waixenicin A, a Marine-Derived TRPM7 Inhibitor: A Promising CNS Drug Lead. Acta Pharmacol. Sin. 2020, 41, 1519–1524. DOI: 1038/s41401-020-00512-4 (b) Zierler, S.; Yao, G.; Zhang, Z.; Kuo, W. C.; Pörzgen, P.; Penner, R.; Horgen, F. D.; Fleig, A. Waixenicin A Inhibits Cell Proliferation through Magnesium-Dependent Block of Transient Receptor Potential Melastatin 7 (TRPM7) Channels. J. Biol. Chem. 2011, 286, 39328–39335. DOI: 10.1074/jbc.M111.264341
  3. (a) Renneberg, D.; Pfander, H.; Leumann, C. J. Total Synthesis of Coraxeniolide-A. J. Org. Chem. 2000, 65, 9069–9079. DOI: 10.1021/jo005582h (b) Larionov, O. V.; Corey, E. J. An Unconventional Approach to the Enantioselective Synthesis of Caryophylloids. J. Am. Chem. Soc. 2008, 130, 2954–2955. DOI: 10.1021/ja8003705 (c) Mushti, C. S.; Kim, J.-H.; Corey, E. J. Total Synthesis of Antheliolide A. J. Am. Chem. Soc. 2006, 128, 14050–14052. DOI: 10.1021/ja066336b (d) Hamel, C.; Prusov, E. V.; Gertsch, J.; Schweizer, W. B.; Altmann, K.-H. Total Synthesis of the Marine Diterpenoid Blumiolide C. Angew. Chem. Int. Ed. 2008, 47, 10081–10085. DOI: 10.1002/anie.200804004 (e) Williams, D. R.; Walsh, M. J.; Miller, N. A. Studies for the Synthesis of Xenicane Diterpenes. A Stereocontrolled Total Synthesis of 4-Hydroxydictyolactone. J. Am. Chem. Soc. 2009, 131, 9038–9045. DOI: 10.1021/ja902677t (f) Fumiyama, H.; Takahashi, A.; Suzuki, Y.; Fujioka, N.; Matsumoto, H.; Hosokawa, S. Total Synthesis of Alcyonolide. J. Org. Chem. 2022, 87, 15492–15498. DOI: 10.1021/acs.joc.2c02031
  4. Brown, H. C.; Jadhav, P. K. Asymmetric Carbon-Carbon Bond Formation via β-Allyldiisopinocampheylborane. Simple Synthesis of Secondary Homoallylic Alcohols with Excellent Enantiomeric Purities. J. Am. Chem. Soc. 1983, 105, 2092–2093. DOI: 10.1021/ja00345a085
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 鉄触媒を用いたテトラゾロピリジンのC(sp3)–Hアミノ化反応
  2. モリブデンのチカラでニトロ化合物から二級アミンをつくる
  3. マテリアルズ・インフォマティクスの導入・活用・推進におけるよくあ…
  4. 実験ノートの字について
  5. イオン交換が分子間電荷移動を駆動する協奏的現象の発見
  6. 五員環を経て三員環へ!ジ-π-“エタン”転位
  7. 未来のノーベル化学賞候補者
  8. 飲む痔の薬のはなし1 ブロメラインとビタミンE

注目情報

ピックアップ記事

  1. 高分子のらせん構造を自在にあやつる -溶媒が支配する右巻き/左巻き構造形成の仕組みを解明-
  2. 無保護環状アミンをワンポットで多重官能基化する
  3. デヴィッド・ナギブ David A. Nagib
  4. 第20回 超分子から高分子へアプローチする ― Stuart Rowan教授
  5. アメリカで Ph.D. を取る -Visiting Weekend 参加報告 (前編)-
  6. 化学の楽しさに触れるセミナーが7月に開催
  7. 分⼦のわずかな⾮対称性の偏りが増幅される現象を発⾒
  8. シクロデキストリンの「穴の中」で光るセンサー
  9. 天野 浩 Hiroshi Amano
  10. 研究者よ景色を描け!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー