[スポンサーリンク]

一般的な話題

「Python in Excel」が機能リリースされたときのメリットを解説します

[スポンサーリンク]

先日、米Microsoft社が「Python in Excel」のパブリックプレビューを発表しました。

「Introducing Python in Excel: The Best of Both Worlds for Data Analysis and Visualization」https://techcommunity.microsoft.com/t5/microsoft-365-blog/introducing-python-in-excel-the-best-of-both-worlds-for-data/ba-p/3905482(参照日:2023年8月24日)

上記プレビュー記事を拝見する限り、パートナー企業さんからも好評を得ています。

この記事では、「Python in Excelに関するパブリックプレビュー」を拝見した際に、「魅力的だと感じた点」や「機能リリース後に、最大限メリットが得られるためにはどうしたら良さそうか」をまとめたものです。

内容は、Pythonやプログラミングに馴染みのない方にも、なるべく分かりやすくを意識しております。

※ なお、Python in Excelで搭載されている機能とその挙動については、筆者が調査した時点(参照: 2023/8/24)での内容に基づくものであり、今後のアップデート次第では内容の解釈が変わる可能性があること、ご承知おきください。

 

どんな機能が魅力的か?

まずは「Python in Excel」のプレビューにあたり、どのような機能が実装予定なのかを抑えておく必要があります。特に大きな魅力を感じた点を、以下2つ挙げました。

1.テーブルデータの選択から、データをインタラクティブに「DataFame」としても扱える
2.選択したセル内で「Pythonの処理コード」を実行できる

1.テーブルデータの選択から、データをインタラクティブに「DataFrame」としても扱える

そもそもとして、どういうことか。
イメージしやすいように、プレビュー記事には「動画が埋め込み」されておりますので、ざっと把握したい方は直接動画をご覧いただければ幸いです。(0:17~0:29あたり)

動画の該当箇所につき、DataFrameとして取り扱うまでの流れを言語化しますと、

1.Excelの関数を呼び出す要領で `=py` とセルに打ち込む
2.テーブルデータを範囲選択する
3.範囲選択されたテーブルデータが、DataFrameとして取り込まれる

上記のフローにて、DataFrameを扱えるようになっています!

DataFrameというのは、今回の説明の範囲内では「Pythonというプログラミング言語でデータ分析をしやすくするための、データのまとまり」くらいに抑えておけば、差し支えないです。

では、なぜDataFrameとして扱えるようになるとメリットがあるのかというと、ずばり「他のライブラリと連携しやすくなり、データの可視化や統計的分析に繋げやすくなる」からです。

こうした機能の追加により、「Excel上に眠っていたデータを、Excel上で操作しているユーザが主体で、データの可視化や統計的分析まで実行しやすくなる場が整備された」と言えるでしょう。

2.選択したセル内で「Pythonの処理コード」を実行できる

実行までの流れは、動画の1:00 ~ 1:10 で紹介されています。

Pythonの処理コード実行までのフローにおいて、他の実行環境(例. ブラウザ、コードエディタ、アプリ)に遷移することなく、Excelシート上で完結しており、かつPythonの処理コードが「明示的に記述」されていることにGoodボタンを押したくなりました!

ユーザがExcelに記録したデータに対し、機能側が割り込みで追加処理を提供し、「データ分析を行う前処理のイメージ」をつかみやすくするメリットが生まれる、といえるでしょう。

画像「Introducing Python in Excel: The Best of Both Worlds for Data Analysis and Visualization」https://techcommunity.microsoft.com/t5/microsoft-365-blog/introducing-python-in-excel-the-best-of-both-worlds-for-data/ba-p/3905482(参照日:2023年8月24日)より引用。(説明のため、一部文字による強調を入れております)

 

機能実装における「裏の狙い」を推察してみる

ソフトウェアやアプリケーションに限る話ではありませんが、何か新しい機能が実装される背景には「既存の機能のみだと技術的に問題がある」ので、「その問題を解決するために新しい機能が実装」されます。

Excelは30年以上もの歴史があるソフトウェアです。今回のような「大規模な機能実装」の背景には、筆者の予想だと「少なくとも4つの理由」があるのではないかと推察します。

1.Excelファイルに保持されたデータを、統計的分析に回すためのイメージが掴めていないユーザは多いのではないか?

2.Excelファイルを外部のプログラム・ライブラリで取り扱おうとしたときの、前提であるプログラム実行環境の構築でつまづくユーザは多いのではないか?

3.クラウド版Excelで保持されたデータの利活用が事例として少ないのではないか?(あるいは、まだまだ事例の浸透が確認できず、クラウド版Excelのメリットが見いだせていないユーザは多いのではないか?)

4.ネームバリューのあるExcelに、「ユーザからは見えない、割り込みの追加処理を機能として付与」したとしても、直接Pythonの処理コードが実行できるようになると幸せになるユーザは多いのではないか?

Python in Excelのような機能の実装は「ロードマップの序盤にすぎない」でしょうし、今後どのように展開していくのかは、大変興味深いです。

 

おわりに

最後に余談ですが、筆者のまわりから次のような質問を伺いまして、その回答を以下に載せておきます。
(類似の質問内容を複数個伺い、需要がありそうと判断したため、こちらに共有した次第です)

Q. Excelマクロ(VBA)とどう違うのか?

A. 少なくともプレビュー記事・動画を拝見した範囲内ではありますが、以下3点の点で「Python in Excelの機能のほうが優位性がある」と推察します。

1.実行に限り、記述言語の知識がほとんどなくても処理がまわる(≒ Pythonの文法の知識がなくても)

2.ユーザが見ているシート上で実行でき、プログラム・コマンド実行の画面(ターミナル、黒い画面)に遷移する必要がない

3.インタラクティブに処理を実行できている(マウス、キーボードで実行可能)

なお、これら優位性の違いは「記述言語の仕様に関わらず抽出されたもの」なので、「VBAとPythonの、どちらが優れているかを指摘していない」ことを、強調しておきます。

Q. Python in Excelの一般リリース後、機能のメリットを最大限に受け取るためにはどうしたらよいか?

A. Excelファイルにて保持されているデータを、「プログラムが処理しやすくなるように整理しておく」に尽きます。Pythonの処理コード実行は「ユーザからは見えない、割り込みの追加処理で行われる」としても、「Pythonの処理コードにデータとして渡す」ことに変わりはないので、処理側でエラーが発生しないように(思っていたのと違う結果にならないように)整理しておくと良さそうです。

たとえば、次の具体的なルールにもとづき「Excelのシート上に記録したデータ」を整理するとよいでしょう。

1.そのデータは、そもそも「データの可視化」「統計的分析」に渡す必要のあるデータか?(機能のお試しを除いて)

2.そのデータを用いて、何をさせたいかが明確か?(例. 経時変化を追跡したデータであり、データを可視化させたい。ある商品の月ごとの売上データであり、機械学習モデルの検証データとして利用したい、など。)

3.上記1.2.のクリアした上で、列指向型のテーブルデータとしての前処理がなされているか?(例. 列方向にまとめた商品価格のデータ(カラム)は、すべて半角であり、すべて数字であり(空白・記号などがひとつも入っていない)、すべて単位が揃っているかどうか、などを精査する。)

 

関連書籍

[amazonjs asin=”B01NCOIC2P” locale=”JP” title=”みんなのPython 第4版”] [amazonjs asin=”4320124618″ locale=”JP” title=”実用的でないPythonプログラミング: 楽しくコードを書いて賢くなろう!”]
Avatar photo

enifuji

投稿者の記事一覧

製造業やITのお客様を中心に、Webアプリ・データサイエンス案件のバックエンド、インフラ、AWSクラウドの技術支援をさせていただいております。

Python, TypeScript, AWS SAA | 個人事業主

関連記事

  1. 名もなきジテルペノイドの初の全合成が導いた構造訂正
  2. 水素原子一個で強力な触媒をケージング ――アルツハイマー病関連…
  3. がん細胞をマルチカラーに光らせる
  4. Rice cooker
  5. 第三回ケムステVシンポ「若手化学者、海外経験を語る」開催報告
  6. サントリー生命科学研究者支援プログラム SunRiSE
  7. 有機合成化学の豆知識botを作ってみた
  8. 電化で実現する脱炭素化ソリューション 〜蒸留・焼成・ケミカルリ…

注目情報

ピックアップ記事

  1. 模型でわかる【金属錯体型超分子】
  2. アッペル反応 Appel Reaction
  3. 2008年イグノーベル賞決定!
  4. 塩基と酸でヘテロ環サイズを”調節する”
  5. ベンジャミン・リスト Benjamin List
  6. ヘルベルト・ワルトマン Herbert Waldmann
  7. き裂を高速で修復する自己治癒材料
  8. 製薬大手のロシュ、「タミフル」効果で05年売上高20%増
  9. プラトー反応 Prato Reaction
  10. 高分子界の準結晶

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

そこのB2N3、不対電子いらない?

ヘテロ原子のみから成る環(完全ヘテロ原子環)のπ非局在型ラジカル種の合成が達成された。ジボラトリアゾ…

経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材室における研究開発専門職について~

我が国の化学産業を維持・発展させていくためには、様々なルール作りや投資配分を行政レベルから考え、実施…

第51回ケムステVシンポ「光化学最前線2025」を開催します!

こんにちは、Spectol21です! 年末ですが、来年2025年二発目のケムステVシンポ、その名…

ケムステV年末ライブ2024を開催します!

2024年も残り一週間を切りました! 年末といえば、そう、ケムステV年末ライブ2024!! …

世界初の金属反応剤の単離!高いE選択性を示すWeinrebアミド型Horner–Wadsworth–Emmons反応の開発

第636回のスポットライトリサーチは、東京理科大学 理学部第一部(椎名研究室)の村田貴嗣 助教と博士…

2024 CAS Future Leaders Program 参加者インタビュー ~世界中の同世代の化学者たちとかけがえのない繋がりを作りたいと思いませんか?~

CAS Future Leaders プログラムとは、アメリカ化学会 (the American C…

第50回Vシンポ「生物活性分子をデザインする潜在空間分子設計」を開催します!

第50回ケムステVシンポジウムの開催告知をさせて頂きます!2020年コロナウイルスパンデミッ…

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP