[スポンサーリンク]

化学者のつぶやき

決め手はジアゾアルケン!!芳香環の分子内1,3-双極子付加環化反応

[スポンサーリンク]

芳香環の1,3-双極子付加環化反応を達成した。生成が困難なジアゾアルケンを双極子に用いたことがこの高難度反応の成功の鍵である

 1,3-双極子付加環化反応

1960年代にHuisgenらが見いだした1,3-双極子付加環化反応は、現在でも複素環化合物の合成に広く用いられている [1]。典型的な1,3-双極子付加環化反応は、双極子(アジドやジアゾアルカン、ニトリルオキシドなど)に親双極子(アルキンやアルケンなど)を作用させ、中性の付加環化体を形成する(図1A)。加えて、アラインなどの環状アルキンも反応性の高い親双極子としてよく用いられる[2]。しかし、芳香環を親双極子として用いた1,3双極子付加環化反応は未だ報告がない。芳香族性に基づく安定化により親双極子としての反応性が著しく低いことがその要因である。

一方2007年Fokinらは、N-スルホニル1,2,3-トリアゾール1aを開環する活性化エネルギーが、N-メチル1,2,3-トリアゾール1bよりも84 kcal/mol低いことを計算化学的に明らかにした(図1B)[3]。今回、著者らは12の環鎖互変異性を利用すれば、ジアゾアルケンが生成できると考えた(図1C)。すなわち、スルホニル基を有する金属トリアゾール4を合成できれば、4の環鎖互変異性により、ジアゾアルケン5が反応系中で生成すると想定した。ジアゾアルケンは双極子として高い反応性をもつと予想されるため、分子内の芳香環部位との1,3-双極子付加環化反応が進行し、スルホイン中間体6が得られると考えた。

図1. (A) 1,3-双極子付加環化反応 (B) 先行研究 (C)本研究

 

“Arenes participate in 1,3-dipolar cycloaddition with in situ-generated diazoalkenes”

Aggarwal, S.; Vu, A.; Eremin, D. B.; Persaud, R.; Fokin, V. V. Nat. Chem. 2023, 15, 764–772.

DOI: 10.1038/s41557-023-01188-z

論文著者の紹介 

研究者の経歴:Valery V. Fokin

1998 Ph.D., University of Southern California, USA (Prof. Nicos A. Petasis)

1998 Postdoc, The Scripps Research Institute, USA (Prof. K. Barry Sharpless)

2000 Assistant Professor, The Scripps Research Institute, USA

2013 Associate Professor, The Scripps Research Institute, USA

2015 Professor, University of Southern California, USA

研究内容:(3+2)付加環化反応、クリックケミストリーに有用な触媒開発

論文の概要

THF中、–48 °Cでリチウムフェニルアセチリド7ap-トルエンスルホニルアジド8を添加し、室温まで昇温した後に塩化アンモニウム水溶液を加えると、スルタム10aを収率86%で得ることに成功した (図2A)。本反応ではリチウムアセチリド7とスルホニルアジド8より、トリアゼン9を経由してリチウムトリアゾール4-Liが生成したと考えられる。その後、想定通り4-Liの環鎖互変異性によって生成したジアゾアルケン5が芳香環部位と分子内1,3-双極子付加環化反応し、6を経由して10を与えたと考えた。次に基質適用範囲を調査したところ、電子供与基をもつアルキン7bや電子求引基をもつ7c、直鎖アルカンをもつアルキン7dにおいても対応する10b–dが得られた。また、スルホニル基のメタ位にニトロ基をもつ8a8bを用いるとN2フラグメントが残ったスルホイン11a, bが得られた。これは6の芳香族化の際に、ニトロ基が脱離基として働いたと考えられる。

想定反応機構を考察するため、中間体INT4の生成経路のDFT計算を試みた(図2B)。まず閉環型INT1は、遷移状態TS1を経て開環し、反応系中でジアゾアルケンINT2が生成すると考えられる。生成したINT2より遷移状態TS2を経て、脱芳香族的な分子内1,3-双極子付加環化反応が進行し、INT3となる。ジアゾアルケンの高い反応性とスルホニル基による芳香環の電子密度の低下が反応の鍵である。また、TS3のエネルギー障壁はわずかであり、INT2からINT4の生成はほとんど協奏的な環化付加反応で進行することが示された。

図2. (A) 基質適用範囲 (B) INT4の自由エネルギーの計算値 (kcal/mol)

以上、リチウムアセチリド7とスルホニルアジド8から反応系中で望みのジアゾアルケンを生成させることに成功し、結果的に、前人未到の芳香環の分子内1,3-双極子付加環化反応の開発へと至った。本反応は生物学活性なスルタム類を簡便に合成可能であり、医薬品合成への貢献が期待される。

 参考文献

  1. A) Michael, A. Ueber Die Einwirkung von Diazobenzolimid Auf Acetylendicarbonsäuremethylester. J. Prakt. Chem. 1893, 48, 94–95. DOI: 10.1002/prac.18930480114 b) Huisgen, R. 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chem., Int. Ed. 1963, 2, 565–598. DOI: 10.1002/anie.196305651 c) Huisgen, R. Kinetics and Mechanism of 1,3-Dipolr Cycloadditions. Angew. Chem., Int. Ed. 1963, 2, 633–645. DOI: 10.1002/anie.196306331
  2. a) Breugst, M.; Reissig, H. The Huisgen Reaction: Milestones of the 1,3‐Dipolar Cycloaddition. Angew. Chem., Int. Ed. 2020, 59, 12293–12307. DOI: 10.1002/anie.202003115 b) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A Strain-Promoted [3+2] Azide−Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems. J. Am. Chem. Soc. 2004, 126, 15046–15047. DOI: 10.1021/ja044996f
  3. Yoo, E. J.; Ahlquist, M.; Kim, S. H.; Bae, I.; Fokin, V. V.; Sharpless, K. B.; Chang, S. Copper-Catalyzed Synthesis OfN-Sulfonyl-1,2,3-Triazoles: Controlling Selectivity. Angew. Chem., Int. Ed. 2007, 46, 1730–1733. 10.1002/anie.200604241
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 近況報告PartII
  2. 有機合成化学協会誌2024年2月号:タンデムボラFriedel-…
  3. シクロファン+ペリレンビスイミドで芳香環を認識
  4. 【著者インタビュー動画あり!】有機化学1000本ノック スペクト…
  5. 製薬産業の最前線バイオベンチャーを訪ねてみよう! ?シリコンバレ…
  6. 複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンス…
  7. 会社でも英語を重視?―さて詮なきことか善きことか
  8. フルオロシランを用いたカップリング反応~ケイ素材料のリサイクルに…

注目情報

ピックアップ記事

  1. 2-(トリメチルシリル)エトキシカルボニル保護基 Teoc Protecting Group
  2. 実現思いワクワク 夢語る日本の化学者
  3. サイエンスイングリッシュキャンプin東京工科大学
  4. わずかな末端修飾で粘度が1万倍も変わる高分子
  5. 光と励起子が混ざった準粒子 ”励起子ポラリトン”
  6. 二酸化炭素をはきだして♪
  7. 食品安全、環境などの分析で中国機関と共同研究 堀場製
  8. カルシウムイオンを結合するロドプシンの発見 ~海の細菌がカルシウムを感じる機構とセンサー応用への期待~
  9. デュポン子会社が植物性化学原料の出荷を開始
  10. プロジェクトディレクトリについて

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー