芳香環の1,3-双極子付加環化反応を達成した。生成が困難なジアゾアルケンを双極子に用いたことがこの高難度反応の成功の鍵である
1,3-双極子付加環化反応
1960年代にHuisgenらが見いだした1,3-双極子付加環化反応は、現在でも複素環化合物の合成に広く用いられている [1]。典型的な1,3-双極子付加環化反応は、双極子(アジドやジアゾアルカン、ニトリルオキシドなど)に親双極子(アルキンやアルケンなど)を作用させ、中性の付加環化体を形成する(図1A)。加えて、アラインなどの環状アルキンも反応性の高い親双極子としてよく用いられる[2]。しかし、芳香環を親双極子として用いた1,3双極子付加環化反応は未だ報告がない。芳香族性に基づく安定化により親双極子としての反応性が著しく低いことがその要因である。
一方2007年Fokinらは、N-スルホニル1,2,3-トリアゾール1aを開環する活性化エネルギーが、N-メチル1,2,3-トリアゾール1bよりも84 kcal/mol低いことを計算化学的に明らかにした(図1B)[3]。今回、著者らは1と2の環鎖互変異性を利用すれば、ジアゾアルケンが生成できると考えた(図1C)。すなわち、スルホニル基を有する金属トリアゾール4を合成できれば、4の環鎖互変異性により、ジアゾアルケン5が反応系中で生成すると想定した。ジアゾアルケンは双極子として高い反応性をもつと予想されるため、分子内の芳香環部位との1,3-双極子付加環化反応が進行し、スルホイン中間体6が得られると考えた。
“Arenes participate in 1,3-dipolar cycloaddition with in situ-generated diazoalkenes”
Aggarwal, S.; Vu, A.; Eremin, D. B.; Persaud, R.; Fokin, V. V. Nat. Chem. 2023, 15, 764–772.
論文著者の紹介
研究者の経歴:Valery V. Fokin
1998 Ph.D., University of Southern California, USA (Prof. Nicos A. Petasis)
1998 Postdoc, The Scripps Research Institute, USA (Prof. K. Barry Sharpless)
2000 Assistant Professor, The Scripps Research Institute, USA
2013 Associate Professor, The Scripps Research Institute, USA
2015 Professor, University of Southern California, USA
研究内容:(3+2)付加環化反応、クリックケミストリーに有用な触媒開発
論文の概要
THF中、–48 °Cでリチウムフェニルアセチリド7aにp-トルエンスルホニルアジド8を添加し、室温まで昇温した後に塩化アンモニウム水溶液を加えると、スルタム10aを収率86%で得ることに成功した (図2A)。本反応ではリチウムアセチリド7とスルホニルアジド8より、トリアゼン9を経由してリチウムトリアゾール4-Liが生成したと考えられる。その後、想定通り4-Liの環鎖互変異性によって生成したジアゾアルケン5が芳香環部位と分子内1,3-双極子付加環化反応し、6を経由して10を与えたと考えた。次に基質適用範囲を調査したところ、電子供与基をもつアルキン7bや電子求引基をもつ7c、直鎖アルカンをもつアルキン7dにおいても対応する10b–dが得られた。また、スルホニル基のメタ位にニトロ基をもつ8aや8bを用いるとN2フラグメントが残ったスルホイン11a, bが得られた。これは6の芳香族化の際に、ニトロ基が脱離基として働いたと考えられる。
想定反応機構を考察するため、中間体INT4の生成経路のDFT計算を試みた(図2B)。まず閉環型INT1は、遷移状態TS1を経て開環し、反応系中でジアゾアルケンINT2が生成すると考えられる。生成したINT2より遷移状態TS2を経て、脱芳香族的な分子内1,3-双極子付加環化反応が進行し、INT3となる。ジアゾアルケンの高い反応性とスルホニル基による芳香環の電子密度の低下が反応の鍵である。また、TS3のエネルギー障壁はわずかであり、INT2からINT4の生成はほとんど協奏的な環化付加反応で進行することが示された。
以上、リチウムアセチリド7とスルホニルアジド8から反応系中で望みのジアゾアルケンを生成させることに成功し、結果的に、前人未到の芳香環の分子内1,3-双極子付加環化反応の開発へと至った。本反応は生物学活性なスルタム類を簡便に合成可能であり、医薬品合成への貢献が期待される。
参考文献
- A) Michael, A. Ueber Die Einwirkung von Diazobenzolimid Auf Acetylendicarbonsäuremethylester. J. Prakt. Chem. 1893, 48, 94–95. DOI: 10.1002/prac.18930480114 b) Huisgen, R. 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chem., Int. Ed. 1963, 2, 565–598. DOI: 10.1002/anie.196305651 c) Huisgen, R. Kinetics and Mechanism of 1,3-Dipolr Cycloadditions. Angew. Chem., Int. Ed. 1963, 2, 633–645. DOI: 10.1002/anie.196306331
- a) Breugst, M.; Reissig, H. The Huisgen Reaction: Milestones of the 1,3‐Dipolar Cycloaddition. Angew. Chem., Int. Ed. 2020, 59, 12293–12307. DOI: 10.1002/anie.202003115 b) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. A Strain-Promoted [3+2] Azide−Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems. J. Am. Chem. Soc. 2004, 126, 15046–15047. DOI: 10.1021/ja044996f
- Yoo, E. J.; Ahlquist, M.; Kim, S. H.; Bae, I.; Fokin, V. V.; Sharpless, K. B.; Chang, S. Copper-Catalyzed Synthesis OfN-Sulfonyl-1,2,3-Triazoles: Controlling Selectivity. Angew. Chem., Int. Ed. 2007, 46, 1730–1733. 10.1002/anie.200604241