[スポンサーリンク]

化学者のつぶやき

ホウ素が隣接した不安定なカルベン!ジボリルカルベンの生成

[スポンサーリンク]

p受容性置換基をもち不安定なジボリルカルベン(DBC)の新たな生成法が開発された。さらに、NMR実験からDBCは中性のホウ素化合物として最も強いルイス酸性を示すことが明らかにされた。

NHCと相反する電子配置をもつDBCの新たな生成法の開発

N-ヘテロ環状カルベン(NHC)は、隣接する窒素がp供与性置換基としてカルベンのp軌道に電子供与するため、s型軌道に非共有電子対が収納された電子配置をとる(図1A左)[1]。NHCはこの非共有電子対によりルイス塩基性を示すため、配位子として盛んに研究されている。一方で、ジボリルカルベン(DBC)は、隣接するホウ素がp受容性置換基としてカルベンの非共有電子対を受容するため、s型軌道が空となる電子配置をとる(図1A右)。この特異な電子配置からDBCはルイス酸性を示す一方で、DBCのカルベン炭素はオクテット則を満たさない上にp受容性置換基をもつため不安定であることが予想される。

不安定なDBCは、理論研究と実験研究が数例報告されているのみの未開拓の化学種である。BerndtらおよびKassaeeらは、DBCにおいてホウ素の空軌道とカルベンの非共有電子対が相互作用し、空のp軌道もしくはs型軌道をもつことを示した(図1B)[2]。実験的には、Berndtらがジボラメチレンシクロプロパンへのルイス塩基の添加によりDBC誘導体を単離している(図1C)[3]。これはジボラメチレンシクロプロパンがDBCに異性化することを示唆している。この報告は平衡で生じるDBCを捕捉した唯一の例であり、依然としてDBCを平衡中間体でなく生成させる方法は知られていない。

東京大学の楠本准教授らは、著者らの以前の報告を踏襲し、環状DBCおよびその前駆体を設計した(図1D)[4, 5]。金属とハロゲンによる安定化を受けるDBC前駆体の有機アルミニウム試薬を用いた脱ハロゲン化によるDBCの定量的な生成法の確立を目指した。

図1. (A) N-ヘテロ環状カルベン(NHC)とジボリルカルベン(DBC)の電子配置、(B) 理論計算されたDBC、(C) ルイス塩基に捕捉されたDBC、(D) 前駆体とルイス酸によるDBCの生成

 

“Synthesis, Characterization, and Trapping of a Cyclic Diborylcarbene, an Electrophilic Carbene”

Shibutani, Y.; Kusumoto, S.; Nozaki, K. J. Am. Chem. Soc. 2023, 145, 16186–16192.

DOI: 10.1021/jacs.3c04933

論文著者の紹介

研究者:楠本周平

研究者の経歴:

–2009                             B.Sc. University of Tokyo, Japan

2009–2014                  Ph.D. University of Tokyo, Japan (Prof. Kyoko Nozaki) 

2014                               Postdoc, University of Tokyo, Japan (Prof. Kyoko Nozaki)

2014–2023                  Assistant professor, University of Tokyo, Japan (Prof. Kyoko Nozaki)

2023–                             Associate professor, University of Tokyo, Japan (Prof. Kyoko Nozaki)

研究内容:金属–配位子協働作用を用いた結合切断/形成反応の開発、ヘテロベンゼンを含む新規配位子の合成

論文の概要

図2AにDBC前駆体5Fおよび5Clの合成経路を示す。まず、既法に従い合成した1にメシチルリチウムを加え、メシチル化体2へ導いた後に、塩基を作用させることで3を得た[5]5Fの合成の際には、得られた3とNFSIを反応させることでモノフルオロ化体4Fとし、強塩基を作用させて前駆体5Fを合成した。一方、5Clの合成では3にNCSを添加し、ジクロロ化体4Clへと変換した後に、カリウムグラファイト(KC8)による還元で5Clへ導いた。合成した5F5Clの構造は、いずれもX線構造解析により明らかにしている(詳しくは論文を参照されたい)。

次に、合成したDBC前駆体5FからDBCの生成を試みた(図2B)。重ベンゼン中5Fにルイス酸(Al(C6F5)3)を作用させることで、5FのC4位炭素の13C NMRピークが169 ppmから242 ppmへシフトした。これは、計算値(5FのC4位: 169 ppm、6のカルベン: 240 ppm)と良い一致を示した。また、19F NMRにおいてAl(C6F5)3に捕捉されたフルオリド([F–Al(C6F5)3])のピークも観測された。これらのNMR実験から6の生成が確認された。さらに、ESI-TOF MSからDBCのカリウムカチオン付加体7・K+の質量ピークが観測された。以上のNMR実験および質量分析からDBCの生成を確認し、これはDBCを平衡中間体でなく生成する新たな手法となる。

続いて、著者らは7のルイス酸性度を評価した(図2C)。5Clの加熱により発生させたDBC7のトリメチルホスフィン複合体は、31P NMRにおいて7.9 ppmにピークを示した。これは頻用されるルイス酸(B(C6F5)3: –6.1 ppm, BF3: –28.5 ppm)よりも著しく低磁場側へシフトしていた。このことから、空のs型軌道をもつDBCは強いルイス酸性を示し、相反する電子配置でありルイス塩基として働くNHCとの対極な物性が明らかとなった。

図2. (A) DBC前駆体5xの合成、(B) DBCのルイス酸をもちいた生成、(C) DBCのルイス酸性度の評価

以上、p受容性置換基をもつ不安定カルベン(DBC)の新たな生成法が確立された。この報告を皮切りに、今後DBCの特異な反応性を利用した反応の開発が期待される。

参考文献

  1. Zhao, Q.; Meng, G.; Nolan, S. P.; Szostak, M. N-Heterocyclic Carbene Complexes in C–H Activation Reactions. Chem. Rev. 2020, 120, 1981–2048. DOI: 10.1021/acs.chemrev.9b00634
  2. (a) Menzel, M.; Winkler, H. J.; Ablelom, T.; Steiner, D.; Fau, S.; Frenking, G.; Massa, W.; Berndt, A. Diborylcarbenes as Reactive Intermediates in Double 1,2-Rearrangements with Low Activation Enthalpies. Chem., Int. Ed. 1995, 34, 1340–1343. DOI: 10.1002/anie.199513401 (b) Kassaee, M. Z.; Koohi, M.; Mohammadi, R.; Ghavami, M. 2,2,9,9-Tetramethylcyclonona-3,5,7-trienylidene vs. Its Heterocyclic Analogues: A Quest for Stable Carbenes at DFT. J. Phys. Org. Chem. 2013, 26, 908–916. DOI: 10.1002/poc.3189
  3. Budzelaar, P. H. M.; Schleyer, P. von R.; Krogh-Jespersen, K. An Extraordinary Structure and Topomerization Mechanism for“Diboramethylenecyclopropane.” Angew. Chem., Int. Ed. 1984, 23, 825–826. DOI: 10.1002/anie.198408251
  4. Simmons, H. E.; Smith, R. D. A New Synthesis of Cyclopropanes from Olefins. J. Am. Chem. Soc. 1958, 80, 5323–5324. DOI: 10.1021/ja01552a080
  5. Kishino, M.; Takaoka, S.; Shibutani, Y.; Kusumoto, S.; Nozaki, K. Synthesis and Reactivity of PC(sp3) P-Pincer Iridium Complexes Bearing a Diborylmethyl Anion. Dalton Trans. 2022, 51, 5009–5015. DOI: 1039/D2DT00513A
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 2007年ノーベル化学賞『固体表面上の化学反応の研究』
  2. 合成化学者十訓
  3. 化学者も参戦!?急成長ワクチン業界
  4. ケミストリ・ソングス【Part 2】
  5. アルキンメタセシスで誕生!HPB to γ-グラフィン!
  6. ノーベル賞化学者と語り合おう!「リンダウ・ノーベル賞受賞者会議」…
  7. 高選択的な不斉触媒系を機械学習で予測する
  8. 専門家要らず?AIによる圧倒的高速なスペクトル解釈

注目情報

ピックアップ記事

  1. Undruggable Target と PROTAC
  2. 野依不斉水素移動反応 Noyori Asymmetric Transfer Hydrogenation
  3. ポリフェノールに食品アレルギー予防効果
  4. 自励振動ポリマーブラシ表面の創製
  5. ブートキャンプ
  6. イグノーベル賞2022が発表:化学賞は無かったけどユニークな研究が盛りだくさん
  7. アザヘテロ環をあざとく作ります
  8. ゲイリー・モランダー Gary A. Molander
  9. プロトン共役電子移動を用いた半導体キャリア密度の精密制御
  10. 博士課程の夢:また私はなぜ心配するのを止めて進学を選んだか

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年9月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP