[スポンサーリンク]

化学者のつぶやき

タンパク質を華麗に模倣!新規単分子クロリドチャネル

[スポンサーリンク]

クロリドチャネル(Chloride Channel: ClC)タンパク質に匹敵する高いクロリド選択性に加えpH応答性を示す単分子チャネルが開発された。先行研究の単分子チャネルにヒドロキシ基を導入したことが鍵である。

生体イオンチャネルと人工クロリドチャネル

生体において、イオンは細胞の浸透圧や筋細胞と神経細胞の働きに深く関わる。そのため、生物は膜貫通タンパク質である生体イオンチャネルによりイオン濃度を調節している。各種生体イオンチャネルはその構造で特定のイオンを透過するが、中でも生体内に多く存在するクロリド(Cl)の選択的チャネルの果たす役割は大きい(図1A)。代表例にクロリドチャネル(ClC)タンパク質があり、生体内に広く分布し細胞の基本的機能に深く関与することが知られる[1]

クロリドチャネルの研究ツールとしての活用や関連疾患に対する治療法の開発を目指し、クロリドチャネルの機能を模倣した分子(人工クロリドチャネル)が研究されてきた[2]。多数の報告がある中で、クロリドの透過性の向上を狙いアニオン–π相互作用やハロゲン結合を利用する巧みな分子設計が報告されている[3]。しかし、依然として生体イオンチャネルに比べクロリド選択性が低く、ClCタンパク質がもつpH応答性を示すものは少ないという課題が残る[4]

以前筆者らは、末端にカルボン酸部位をもちClCタンパク質構造を模倣した人工クロリドチャネルを報告している(図1C)[5]。しかし、カリウムイオンに対するクロリドの選択性PCl–/PK+ = 1.90は高くなかった。そこで、今回チャネルの中心にヒドロキシ基を導入することで、水素結合によりアニオン選択性が向上した。また、新規クロリドチャネルはpH応答性を示すことも明らかとなった。

図1. (A) クロリドチャネル (B) 人工クロリドチャネルの部分構造とクロリドとの相互作用 (C) 新規クロリドチャネル

 

“An Artificial Single Molecular Channel Showing High Chloride Transport Selectivity  and pH-Responsive Conductance”

Huang, W.-L.; Wang, X.-D.; Ao, Y.-F.; Wang, Q.-Q.; Wang, D.-X. Angew. Chem., Int. Ed. 2023, 62, e202302198.

DOI: 10.1002/anie.202302198

論文著者の紹介

研究者 : Qi-Qiang Wang (王其强)

研究者の経歴

1999–2003 B.S., Wuhan University, China 

2003–2008 Ph.D., Institute of Chemistry, Chinese Academy of Sciences, China 

(Prof. Mei-Xiang Wang)

2008–2013 Postdoc, University of Kansas, USA (Prof. Kristin Bowman-James)

2014–2015 Postdoc, University of Amsterdam, The Netherlands (Prof. Joost N. H. Reek)

2015– Professor, Institute of Chemistry, Chinese Academy of Sciences, China

研究内容:アニオン–π相互作用の超分子化学への応用、超分子化合物の合成と物性評価、生体触媒を用いた反応開発、金属錯体の合成と物性評価

研究者 : De-Xian Wang (王德先)

研究者の経歴

1987–1991 B.S., Lanzhou University, China

1997–2003 Ph.D., Hebei University, China

1991–2002 Lecturer, Assistant Professor, Associate Professor, Hebei University, China 

2002–2004 Postdoc, Inha University, Korea

2004– Associate Professor, Professor, Institute of Chemistry, Chinese Academy of Sciences, China

研究内容:アニオン–π相互作用の超分子化学への応用、超分子化合物の合成と物性評価、金属錯体の合成と物性評価

論文の概要

著者らは、ベンゼンジオール2とジクロロトリアジン3の芳香族求核置換反応により大環状分子4を調製し、続く脱保護によりクロリドチャネル1を得た(図2A)[5, 6]

彼らはまず、合成した1がクロリドを透過するか確認した[5, 6]。ハロゲン感受性蛍光色素Lucigeninは、対アニオンが硝酸イオンからクロリドになると消光する。Lucigeninと硝酸ナトリウム溶液で満たされたリポソーム(Liposome)を含む塩化カリウム溶液に1を添加した際、Lucigeninの消光が確認できた(図2B)。これは、1によりクロリドがリポソームの膜を透過したことを示す。

続いて、1のアニオン選択性を調査した[5]。1を導入した平面脂質二重膜(BLM)で隔てた2つのチャンバーを濃度の異なる塩化カリウム水溶液で満たし(図2C左上図)、任意の電圧を印加した際に流れる電流を測定した(図2C下図)。pHの異なる条件で得られた電圧–電流の関係から、アニオン選択性PCl–/PK+および電流の流れやすさ(コンダクタンス: g)を算出した(図2C右上図)。その結果、アニオン選択性は、pH = 6においてPCl–/PK+ = 12.3となりClCタンパク質と遜色ない値となった。この高い選択性は、トリアジンとのアニオン–π相互作用に加え、新たに導入したヒドロキシ基との水素結合によるクロリドの安定化によって達成された(図2C右下図)。さらに、pH上昇に伴いPCl–/PK+とgの値が減少したため、1はClCタンパク質と同様にpH応答性を示すことが明らかとなった。1の末端カルボン酸(pKa ≈ 6)およびヒドロキシ基(pKa ≈ 8.21)のプロトンが脱離しアニオンとなり、クロリドとの間に反発が生じたためと考えられる。詳細な実験結果や他の物性に関しては本文を参照されたい。

図2. (A) 1の合成 (B) Lucigeninを用いた消光実験(論文から引用) (C) BLM測定(論文から引用)および1とクロリドとの相互作用

 

以上、高いクロリド選択性とpH応答性を併せもつ人工イオンチャネルが開発された。1はClCタンパク質と同様の性質を示すことから、医療分野への応用が期待される。

参考文献

  1. (a) Jentsch, T. J. Discovery of CLC Transport Proteins: Cloning, Structure, Function and Pathophysiology.J. Physiol., 2015, 593, 4091–4109. DOI: 1113/JP270043 (b) Jentsch, T. J.; Pusch, M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol. Rev. 2018, 98, 1493–1590. DOI: 10.1152/physrev.00047.2017
  2. (a) Brotherhood, P. R.; Davis, A. P. Steroid-Based Anion Receptors and Transporters. Chem. Soc. Rev. 2010, 39, 3633–3647. DOI: 1039/B926225N (b) Gale, P. A.; Davis, J. T.; Quesada, R. Anion Transport and Supramolecular Medicinal Chemistry. Chem. Soc. Rev. 2017, 46, 2497–2519. DOI: 10.1039/C7CS00159B
  3. (a) Vargas Jentzsch, A.; Matile, S. Transmembrane Halogen-Bonding Cascades. J. Am. Chem. Soc. 2013, 135, 5302–5303. DOI: 1021/ja4013276 (b) Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D. Halogen Bonding in Supramolecular Chemistry. Chem. Rev. 2015, 115, 7118–7195. DOI: 10.1021/cr500674c (c) Gorteau, V.; Bollot, G.; Mareda, J.; Perez-Velasco, A.; Matile, S. Rigid Oligonaphthalenediimide Rods as Transmembrane Anion–π Slides. J. Am. Chem. Soc. 2006, 128, 14788–14789. DOI: 10.1021/ja0665747 (d) Mareda, J.; Matile, S. Anion–π Slides for Transmembrane Transport. Chem. Eur. J. 2009, 15, 28–37. DOI: 10.1002/chem.200801643
  4. (a) Okunola, O. A.; Seganish, J. L.; Salimian, K. J.; Zavalij, P. Y.; Davis, J. T. Membrane-Active Calixarenes: Toward ‘Gating’ Transmembrane Anion Transport. Tetrahedron 2007, 63, 10743–10750. DOI: 1016/j.tet.2007.06.124 (b) Xin, P.; Tan, S.; Wang, Y.; Sun, Y.; Wang, Y.; Xu, Y.; Chen, C.-P. Functionalized Hydrazide Macrocycle Ion Channels Showing pH-Sensitive Ion Selectivities. Chem. Commun. 2017, 53, 625–628. DOI: 10.1039/C6CC08943G (c) Zheng, S.; Jiang, J.; Lee, A.; Barboiu, M. A Voltage‐Responsive Synthetic Cl-Channel Regulated by pH. Angew. Chem., Int. Ed. 2020, 59, 18920–18926. DOI: 10.1002/anie.202008393
  5. Huang, W.-L.; Wang, X.-D.; Ao, Y.-F.; Wang, Q.-Q.; Wang, D.-X. Artificial Chloride-Selective Channel: Shape and Function Mimic of the ClC Channel Selective Pore. J. Am. Chem. Soc. 2020, 142, 13273–13277. DOI: 1021/jacs.0c02881
  6. (a) Wang, X.-D.; Li, S.; Ao, Y.-F.; Wang, Q.-Q.; Huang, Z.-T.; Wang, D.-X. Oxacalix[2]arene[2]triazine Based Ion-Pair Transporters. Org. Biomol. Chem. 2016, 14, 330–334. DOI: 1039/C5OB02291F (b) Huang, W.-L.; Wang, X.-D.; Li, S.; Zhang, R.; Ao, Y.-F.; Tang, J.; Wang, Q.-Q.; Wang, D.-X. Anion Transporters Based on Noncovalent Balance Including Anion–π, Hydrogen, and Halogen Bonding. J. Org. Chem. 2019, 84, 8859–8869. DOI: 10.1021/acs.joc.9b00561
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ChemDraw の使い方【作図編④: 反応機構 (前編)】
  2. シンプルなα,β-不飽和カルベン種を生成するレニウム触媒系
  3. 林 雄二郎博士に聞く ポットエコノミーの化学
  4. 化学者に役立つWord辞書
  5. 史上最も不運な化学者?
  6. KISTEC教育講座『中間水コンセプトによるバイオ・医療材料開発…
  7. 真空ポンプはなぜ壊れる?
  8. 温和な室温条件で高反応性活性種・オルトキノジメタンを生成

注目情報

ピックアップ記事

  1. 吉野彰氏がリチウムイオン電池技術の発明・改良で欧州発明家賞にノミネート
  2. Undruggable Target と PROTAC
  3. リチウム金属電池の寿命を短くしている原因を研究者が突き止める
  4. トリメチレンメタン付加環化 Trimethylenemethane(TMM) Cycloaddition
  5. 信越化学、排水・排ガスからの塩水回収技術を開発
  6. オルト−トルイジンと発がんの関係
  7. 第7回 慶應有機化学若手シンポジウム
  8. シリカゲルはメタノールに溶けるのか?
  9. 韮崎大村美術館が27日オープン 女性作家中心に90点展示
  10. 2005年9-10月分の気になる化学関連ニュース投票結果

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP