[スポンサーリンク]

化学者のつぶやき

アセタールで極性転換!CF3カルビニルラジカルの求核付加反応

[スポンサーリンク]

多様な電子不足オレフィンのヒドロトリフルオロアセチル化反応が開発された。求核的なトリフルオロメチルアシルラジカル等価体の利用が本反応の鍵である。

求核的CF3カルビニルラジカルを用いたヒドロトリフルオロアセチル化

トリフルオロアセチル(CF3CO–, TFA)基は医薬品の代謝安定性や生物活性の向上に寄与することから、医薬品開発において近年注目を浴びている[1]。TFA基の導入法の一つとして、トリフルオロメチル(CF3)アシルラジカルを用いたオレフィンへのラジカル付加が挙げられる(図1A)。2021年、Katayevらは、無水トリフルオロ酢酸(TFAA)から生じたCF3アシルラジカルをオレフィンへ付加させ、オレフィンのトリフルオロアセチル化に成功した(図1B)[2]。求電子的であるCF3アシルラジカルは、電子豊富オレフィンと効率的に反応する[3]。一方で、電子不足オレフィンへのラジカル付加は困難であり、依然として達成されていなかった。

テンプル大学のKimらは、電子不足オレフィンへのCF3アシルラジカルの付加を達成するため、1,3-ジチアンによるカルボニルの極性転換に注目した(図1C)。1,3-ジチアンに強塩基を作用させて生じたカルボアニオンは、代表的なアシルアニオン等価体である。この極性転換を利用した例として、Xuらによる、イリジウム光触媒を用いた非環状アルコキシカルボン酸の電子不足オレフィンへのラジカル付加が報告されている[4]。以上のことから、CF3アシルラジカルのアセタール保護体であれば、アセタールの酸素原子からの電子の押し込みにより、電子不足オレフィンへの求核的なラジカル付加が可能であると予想された。

今回Kimらは、多様な電子不足オレフィンのヒドロトリフルオロアセチル化反応の開発に成功した(図1D)。光触媒存在下、CF3カルビニルラジカルの電子不足オレフィンへの付加が進行した後、生成したアセタールの脱保護により、電子不足オレフィンへのTFA基の導入を達成した。

図1. (A) CF3アシルラジカルのオレフィンへの付加および反応性 (B) KatayevらによるオレフィンへのTFA基の導入 (C) ヒドロトリフルオロアセチル化の参考例 (D) オレフィンのヒドロトリフルオロアセチル化反応

 

“Hydrotrifluoroacetylation of Alkenes via Designer Masked Acyl Reagents”

Sangil Han, Kyra L. Samony, Rifat N. Nabi, Campbell A. Bache, and Daniel K. Kim J. Am. Chem. Soc. 2023, 145, 11530−11536.

DOI: 10.1021/jacs.3c04294

 

論文著者の紹介

研究者:Daniel K. Kim

研究者の経歴:

–2012                             B.S. in Chemistry, Gettysburg College, USA (Prof. Timothy Funk)

2012–2018                  Ph.D., University of California, Irvine, USA (Prof. Vy Dong)

2018–2020                  Postdoc, Princeton University, USA (Prof. David W. C. MacMillan)

2020–                            Assistant Professor, Temple University, USA

研究内容:遷移金属触媒や生体触媒を用いた新規反応の開発

論文の概要

 DMF中、光触媒4CzIPNおよびCs2CO3存在下、カルボン酸1と電子不足オレフィン2456 nmLED光を照射すると、アセタール3が得られた(2A)。基質適用範囲を調査したところ、ピリジン(3a)やトリフルオロメチルピリジン(3b)、アミド基(3c)、スルホニル基(3d)、シアノ基(3e)をもつ一置換オレフィンや三置換オレフィン(3f)など種々の電子不足オレフィンに対して反応が進行した。

 次に、合成したアセタール3の脱保護を試みた(2B)3は通常のアセタールと異なり、HClなどのブレンステッド酸を用いた脱保護条件ではアセタールが除去できなかった。これは、CF3基の電子求引性により、CF3に隣接する炭素を中心とするスピロアセタール構造が安定化するためである[5]。アセタールの脱保護条件の検討の結果、BBr3が有効であることを見いだした。しかし、TFA基の高い電子求引性のため、生成物はケトンと水和物の混合物として得られた。

 本反応の推定反応機構を示す(2C)。まず、光触媒4CzIPN(5)が可視光照射により励起された後、*4CzIPN(6)による一電子酸化により、カルボキシレート1’からCF3カルビニルラジカル8が生成する。この8が電子不足オレフィンに付加して生じた中間体9を、4CzIPN·–(7)が還元し、カップリング体3aが得られると考えられる。

図2. (A) 本反応および基質適応範囲 (B) アセタール部位のカルボニルへの変換 (C) 推定反応機構

 

 以上、電子不足オレフィンに対して適用可能なヒドロトリフルオロアセチル化反応が開発された。今後本反応がTFA基をもつ医薬品開発に貢献することを期待したい。

参考文献

  1. (a) Jose, B.; Oniki, Y.; Kato, T.; Nishino, N.; Sumida, Y.; Yoshida, M. Novel Histone Deacetylase Inhibitors: Cyclic Tetrapeptide with Trifluoromethyl and Pentafluoroethyl Ketones. Bioorg. Med. Chem. Lett. 2004, 14, 5343–5346. DOI: 10.1016/j.bmcl.2004.08.016 (b) Stein, R. L.; Strimpler, A. M.; Edwards, P. D.; Lewis, J. J.; Mauger, R. C.; Schwartz, J. A.; Stein, M. M.; Trainor, D. A.; Wildonger, R. A.; Zottola, M. A. Mechanism of Slow-Binding Inhibition of Human Leukocyte Elastase by Trifluoromethyl Ketones. Biochemistry 1987, 26, 2682–2689. DOI: 10.1021/bi00384a005
  2. (a) Lu, B.; Xu, M.; Qi, X.; Jiang, M.; Xiao, W.-J.; Chen, J.-R. Switchable Radical Carbonylation by Philicity Regulation. J. Am. Chem. Soc. 2022, 144, 14923–14935. DOI: 10.1021/jacs.2c06677 (b) De Vleeschouwer, F.; Van Speybroeck, V.; Waroquier, M.; Geerlings, P.; De Proft, F. Electrophilicity and Nucleophilicity Index for Radicals. Org. Lett. 2007, 9, 2721–2724. DOI: 10.1021/ol071038k
  3. Zhang, K.; Rombach, D.; Nötel, N. Y.; Jeschke, G.; Katayev, D. Radical Trifluoroacetylation of Alkenes Triggered by a Visible-Light-Promoted C–O Bond Fragmentation of Trifluoroacetic Anhydride. Angew. Chem., Int. Ed. 2021, 60, 22487–22495. DOI: 10.1002/anie.202109235
  4. Zhang, S.; Tan, Z.; Zhang, H.; Liu, J.; Xu, W.; Xu, K. An Ir-Photoredox-Catalyzed Decarboxylative Michael Addition of Glyoxylic Acid Acetal as a Formyl Equivalent. Chem. Commun. 2017, 53, 11642–11645. DOI: 10.1039/C7CC06252D
  5. Guthrie, J. P. Carbonyl Addition Reactions: Factors Affecting the Hydrate–Hemiacetal and Hemiacetal–Acetal Equilibrium Constants. Can. J. Chem. 1975, 53, 898–906. DOI: 10.1139/v75-125
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 男性研究者、育休を取る。
  2. edXで京都大学の無料講義配信が始まる!
  3. パラジウム触媒の力で二酸化炭素を固定する
  4. 【速報】2010年ノーベル生理医学賞決定ーケンブリッジ大のエドワ…
  5. Reaxys Prize 2012受賞者決定!
  6. 紹介会社を使った就活
  7. 研究者へのインタビュー
  8. 静電相互作用を駆動力とする典型元素触媒

注目情報

ピックアップ記事

  1. 神谷 信夫 Nobuo Kamiya
  2. 有機ELディスプレイ材料市場について調査結果を発表
  3. コーリー・ギルマン・ガネム酸化 Corey-Gilman-Ganem Oxidation
  4. 「芳香族共役ポリマーに学ぶ」ーブリストル大学Faul研より
  5. 銀ジャケを狂わせた材料 ~タイヤからの意外な犯人~
  6. 「アバスチン」臨床試験中間解析を公表 中外製薬
  7. ケミカル・アリに死刑判決
  8. マニュエル・アルカラゾ Manuel Alcarazo
  9. お望みの立体構造のジアミン、作ります。
  10. 10種類のスパチュラを試してみた

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

植物由来アルカロイドライブラリーから新たな不斉有機触媒の発見

第632回のスポットライトリサーチは、千葉大学大学院医学薬学府(中分子化学研究室)博士課程後期3年の…

MEDCHEM NEWS 33-4 号「創薬人育成事業の活動報告」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

第49回ケムステVシンポ「触媒との掛け算で拡張・多様化する化学」を開催します!

第49回ケムステVシンポの会告を致します。2年前(32回)・昨年(41回)に引き続き、今年も…

【日産化学】新卒採用情報(2026卒)

―研究で未来を創る。こんな世界にしたいと理想の姿を描き、実現のために必要なものをうみだす。…

硫黄と別れてもリンカーが束縛する!曲がったπ共役分子の構築

紫外光による脱硫反応を利用することで、本来は平面であるはずのペリレンビスイミド骨格を歪ませることに成…

有機合成化学協会誌2024年11月号:英文特集号

有機合成化学協会が発行する有機合成化学協会誌、2024年11月号がオンライン公開されています。…

小型でも妥協なし!幅広い化合物をサチレーションフリーのELSDで検出

UV吸収のない化合物を精製する際、一定量でフラクションをすべて収集し、TLCで呈色試…

第48回ケムステVシンポ「ペプチド創薬のフロントランナーズ」を開催します!

いよいよ本年もあと僅かとなって参りましたが、皆様いかがお過ごしでしょうか。冬…

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

【日産化学 26卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で10領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP