[スポンサーリンク]

化学者のつぶやき

アセタールで極性転換!CF3カルビニルラジカルの求核付加反応

[スポンサーリンク]

多様な電子不足オレフィンのヒドロトリフルオロアセチル化反応が開発された。求核的なトリフルオロメチルアシルラジカル等価体の利用が本反応の鍵である。

求核的CF3カルビニルラジカルを用いたヒドロトリフルオロアセチル化

トリフルオロアセチル(CF3CO–, TFA)基は医薬品の代謝安定性や生物活性の向上に寄与することから、医薬品開発において近年注目を浴びている[1]。TFA基の導入法の一つとして、トリフルオロメチル(CF3)アシルラジカルを用いたオレフィンへのラジカル付加が挙げられる(図1A)。2021年、Katayevらは、無水トリフルオロ酢酸(TFAA)から生じたCF3アシルラジカルをオレフィンへ付加させ、オレフィンのトリフルオロアセチル化に成功した(図1B)[2]。求電子的であるCF3アシルラジカルは、電子豊富オレフィンと効率的に反応する[3]。一方で、電子不足オレフィンへのラジカル付加は困難であり、依然として達成されていなかった。

テンプル大学のKimらは、電子不足オレフィンへのCF3アシルラジカルの付加を達成するため、1,3-ジチアンによるカルボニルの極性転換に注目した(図1C)。1,3-ジチアンに強塩基を作用させて生じたカルボアニオンは、代表的なアシルアニオン等価体である。この極性転換を利用した例として、Xuらによる、イリジウム光触媒を用いた非環状アルコキシカルボン酸の電子不足オレフィンへのラジカル付加が報告されている[4]。以上のことから、CF3アシルラジカルのアセタール保護体であれば、アセタールの酸素原子からの電子の押し込みにより、電子不足オレフィンへの求核的なラジカル付加が可能であると予想された。

今回Kimらは、多様な電子不足オレフィンのヒドロトリフルオロアセチル化反応の開発に成功した(図1D)。光触媒存在下、CF3カルビニルラジカルの電子不足オレフィンへの付加が進行した後、生成したアセタールの脱保護により、電子不足オレフィンへのTFA基の導入を達成した。

図1. (A) CF3アシルラジカルのオレフィンへの付加および反応性 (B) KatayevらによるオレフィンへのTFA基の導入 (C) ヒドロトリフルオロアセチル化の参考例 (D) オレフィンのヒドロトリフルオロアセチル化反応

 

“Hydrotrifluoroacetylation of Alkenes via Designer Masked Acyl Reagents”

Sangil Han, Kyra L. Samony, Rifat N. Nabi, Campbell A. Bache, and Daniel K. Kim J. Am. Chem. Soc. 2023, 145, 11530−11536.

DOI: 10.1021/jacs.3c04294

 

論文著者の紹介

研究者:Daniel K. Kim

研究者の経歴:

–2012                             B.S. in Chemistry, Gettysburg College, USA (Prof. Timothy Funk)

2012–2018                  Ph.D., University of California, Irvine, USA (Prof. Vy Dong)

2018–2020                  Postdoc, Princeton University, USA (Prof. David W. C. MacMillan)

2020–                            Assistant Professor, Temple University, USA

研究内容:遷移金属触媒や生体触媒を用いた新規反応の開発

論文の概要

 DMF中、光触媒4CzIPNおよびCs2CO3存在下、カルボン酸1と電子不足オレフィン2456 nmLED光を照射すると、アセタール3が得られた(2A)。基質適用範囲を調査したところ、ピリジン(3a)やトリフルオロメチルピリジン(3b)、アミド基(3c)、スルホニル基(3d)、シアノ基(3e)をもつ一置換オレフィンや三置換オレフィン(3f)など種々の電子不足オレフィンに対して反応が進行した。

 次に、合成したアセタール3の脱保護を試みた(2B)3は通常のアセタールと異なり、HClなどのブレンステッド酸を用いた脱保護条件ではアセタールが除去できなかった。これは、CF3基の電子求引性により、CF3に隣接する炭素を中心とするスピロアセタール構造が安定化するためである[5]。アセタールの脱保護条件の検討の結果、BBr3が有効であることを見いだした。しかし、TFA基の高い電子求引性のため、生成物はケトンと水和物の混合物として得られた。

 本反応の推定反応機構を示す(2C)。まず、光触媒4CzIPN(5)が可視光照射により励起された後、*4CzIPN(6)による一電子酸化により、カルボキシレート1’からCF3カルビニルラジカル8が生成する。この8が電子不足オレフィンに付加して生じた中間体9を、4CzIPN·–(7)が還元し、カップリング体3aが得られると考えられる。

図2. (A) 本反応および基質適応範囲 (B) アセタール部位のカルボニルへの変換 (C) 推定反応機構

 

 以上、電子不足オレフィンに対して適用可能なヒドロトリフルオロアセチル化反応が開発された。今後本反応がTFA基をもつ医薬品開発に貢献することを期待したい。

参考文献

  1. (a) Jose, B.; Oniki, Y.; Kato, T.; Nishino, N.; Sumida, Y.; Yoshida, M. Novel Histone Deacetylase Inhibitors: Cyclic Tetrapeptide with Trifluoromethyl and Pentafluoroethyl Ketones. Bioorg. Med. Chem. Lett. 2004, 14, 5343–5346. DOI: 10.1016/j.bmcl.2004.08.016 (b) Stein, R. L.; Strimpler, A. M.; Edwards, P. D.; Lewis, J. J.; Mauger, R. C.; Schwartz, J. A.; Stein, M. M.; Trainor, D. A.; Wildonger, R. A.; Zottola, M. A. Mechanism of Slow-Binding Inhibition of Human Leukocyte Elastase by Trifluoromethyl Ketones. Biochemistry 1987, 26, 2682–2689. DOI: 10.1021/bi00384a005
  2. (a) Lu, B.; Xu, M.; Qi, X.; Jiang, M.; Xiao, W.-J.; Chen, J.-R. Switchable Radical Carbonylation by Philicity Regulation. J. Am. Chem. Soc. 2022, 144, 14923–14935. DOI: 10.1021/jacs.2c06677 (b) De Vleeschouwer, F.; Van Speybroeck, V.; Waroquier, M.; Geerlings, P.; De Proft, F. Electrophilicity and Nucleophilicity Index for Radicals. Org. Lett. 2007, 9, 2721–2724. DOI: 10.1021/ol071038k
  3. Zhang, K.; Rombach, D.; Nötel, N. Y.; Jeschke, G.; Katayev, D. Radical Trifluoroacetylation of Alkenes Triggered by a Visible-Light-Promoted C–O Bond Fragmentation of Trifluoroacetic Anhydride. Angew. Chem., Int. Ed. 2021, 60, 22487–22495. DOI: 10.1002/anie.202109235
  4. Zhang, S.; Tan, Z.; Zhang, H.; Liu, J.; Xu, W.; Xu, K. An Ir-Photoredox-Catalyzed Decarboxylative Michael Addition of Glyoxylic Acid Acetal as a Formyl Equivalent. Chem. Commun. 2017, 53, 11642–11645. DOI: 10.1039/C7CC06252D
  5. Guthrie, J. P. Carbonyl Addition Reactions: Factors Affecting the Hydrate–Hemiacetal and Hemiacetal–Acetal Equilibrium Constants. Can. J. Chem. 1975, 53, 898–906. DOI: 10.1139/v75-125
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 特定の刺激でタンパク質放出速度を制御できるスマート超分子ヒドロゲ…
  2. シャンパンの泡、脱気の泡
  3. 「夢・化学-21」 夏休み子ども化学実験ショー
  4. 日本化学会 第103春季年会 付設展示会ケムステキャンペーン P…
  5. 研究室での英語【Part 2】
  6. 糖鎖を直接連結し天然物をつくる
  7. ポルフィリン化学100年の謎を解明:calix[3]pyrrol…
  8. 世界の化学企業いくつ知っていますか?

注目情報

ピックアップ記事

  1. グルコース (glucose)
  2. 化学大手4社は増収 4-6月期連結決算
  3. エステルからエーテルへの水素化脱酸素反応を促進する高活性固体触媒の開発
  4. 肥満防止の「ワクチン」を開発 米研究チーム
  5. 構造式から選ぶ花粉症のOTC医薬品
  6. ロジウム(II)アセタート (ダイマー):Rhodium(II) Acetate Dimer
  7. 総合化学大手5社の前期、4社が経常減益
  8. 夢の筒状分子 カーボンナノチューブ
  9. GoogleがVRラボを提供 / VRで化学の得点を競うシミュレーションゲーム
  10. 芳香族ボロン酸でCatellani反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP