多様な電子不足オレフィンのヒドロトリフルオロアセチル化反応が開発された。求核的なトリフルオロメチルアシルラジカル等価体の利用が本反応の鍵である。
求核的CF3カルビニルラジカルを用いたヒドロトリフルオロアセチル化
トリフルオロアセチル(CF3CO–, TFA)基は医薬品の代謝安定性や生物活性の向上に寄与することから、医薬品開発において近年注目を浴びている[1]。TFA基の導入法の一つとして、トリフルオロメチル(CF3)アシルラジカルを用いたオレフィンへのラジカル付加が挙げられる(図1A)。2021年、Katayevらは、無水トリフルオロ酢酸(TFAA)から生じたCF3アシルラジカルをオレフィンへ付加させ、オレフィンのトリフルオロアセチル化に成功した(図1B)[2]。求電子的であるCF3アシルラジカルは、電子豊富オレフィンと効率的に反応する[3]。一方で、電子不足オレフィンへのラジカル付加は困難であり、依然として達成されていなかった。
テンプル大学のKimらは、電子不足オレフィンへのCF3アシルラジカルの付加を達成するため、1,3-ジチアンによるカルボニルの極性転換に注目した(図1C)。1,3-ジチアンに強塩基を作用させて生じたカルボアニオンは、代表的なアシルアニオン等価体である。この極性転換を利用した例として、Xuらによる、イリジウム光触媒を用いた非環状アルコキシカルボン酸の電子不足オレフィンへのラジカル付加が報告されている[4]。以上のことから、CF3アシルラジカルのアセタール保護体であれば、アセタールの酸素原子からの電子の押し込みにより、電子不足オレフィンへの求核的なラジカル付加が可能であると予想された。
今回Kimらは、多様な電子不足オレフィンのヒドロトリフルオロアセチル化反応の開発に成功した(図1D)。光触媒存在下、CF3カルビニルラジカルの電子不足オレフィンへの付加が進行した後、生成したアセタールの脱保護により、電子不足オレフィンへのTFA基の導入を達成した。
“Hydrotrifluoroacetylation of Alkenes via Designer Masked Acyl Reagents”
Sangil Han, Kyra L. Samony, Rifat N. Nabi, Campbell A. Bache, and Daniel K. Kim J. Am. Chem. Soc. 2023, 145, 11530−11536.
DOI: 10.1021/jacs.3c04294
論文著者の紹介
研究者:Daniel K. Kim
研究者の経歴:
–2012 B.S. in Chemistry, Gettysburg College, USA (Prof. Timothy Funk)
2012–2018 Ph.D., University of California, Irvine, USA (Prof. Vy Dong)
2018–2020 Postdoc, Princeton University, USA (Prof. David W. C. MacMillan)
2020– Assistant Professor, Temple University, USA
研究内容:遷移金属触媒や生体触媒を用いた新規反応の開発
論文の概要
DMF中、光触媒4CzIPNおよびCs2CO3存在下、カルボン酸1と電子不足オレフィン2に456 nmのLED光を照射すると、アセタール3が得られた(図2A)。基質適用範囲を調査したところ、ピリジン(3a)やトリフルオロメチルピリジン(3b)、アミド基(3c)、スルホニル基(3d)、シアノ基(3e)をもつ一置換オレフィンや三置換オレフィン(3f)など種々の電子不足オレフィンに対して反応が進行した。
次に、合成したアセタール3の脱保護を試みた(図2B)。3は通常のアセタールと異なり、HClなどのブレンステッド酸を用いた脱保護条件ではアセタールが除去できなかった。これは、CF3基の電子求引性により、CF3に隣接する炭素を中心とするスピロアセタール構造が安定化するためである[5]。アセタールの脱保護条件の検討の結果、BBr3が有効であることを見いだした。しかし、TFA基の高い電子求引性のため、生成物はケトンと水和物の混合物として得られた。
本反応の推定反応機構を示す(図2C)。まず、光触媒4CzIPN(5)が可視光照射により励起された後、*4CzIPN(6)による一電子酸化により、カルボキシレート1’からCF3カルビニルラジカル8が生成する。この8が電子不足オレフィンに付加して生じた中間体9を、4CzIPN·–(7)が還元し、カップリング体3aが得られると考えられる。
以上、電子不足オレフィンに対して適用可能なヒドロトリフルオロアセチル化反応が開発された。今後本反応がTFA基をもつ医薬品開発に貢献することを期待したい。
参考文献
- (a) Jose, B.; Oniki, Y.; Kato, T.; Nishino, N.; Sumida, Y.; Yoshida, M. Novel Histone Deacetylase Inhibitors: Cyclic Tetrapeptide with Trifluoromethyl and Pentafluoroethyl Ketones. Bioorg. Med. Chem. Lett. 2004, 14, 5343–5346. DOI: 10.1016/j.bmcl.2004.08.016 (b) Stein, R. L.; Strimpler, A. M.; Edwards, P. D.; Lewis, J. J.; Mauger, R. C.; Schwartz, J. A.; Stein, M. M.; Trainor, D. A.; Wildonger, R. A.; Zottola, M. A. Mechanism of Slow-Binding Inhibition of Human Leukocyte Elastase by Trifluoromethyl Ketones. Biochemistry 1987, 26, 2682–2689. DOI: 10.1021/bi00384a005
- (a) Lu, B.; Xu, M.; Qi, X.; Jiang, M.; Xiao, W.-J.; Chen, J.-R. Switchable Radical Carbonylation by Philicity Regulation. J. Am. Chem. Soc. 2022, 144, 14923–14935. DOI: 10.1021/jacs.2c06677 (b) De Vleeschouwer, F.; Van Speybroeck, V.; Waroquier, M.; Geerlings, P.; De Proft, F. Electrophilicity and Nucleophilicity Index for Radicals. Org. Lett. 2007, 9, 2721–2724. DOI: 10.1021/ol071038k
- Zhang, K.; Rombach, D.; Nötel, N. Y.; Jeschke, G.; Katayev, D. Radical Trifluoroacetylation of Alkenes Triggered by a Visible-Light-Promoted C–O Bond Fragmentation of Trifluoroacetic Anhydride. Angew. Chem., Int. Ed. 2021, 60, 22487–22495. DOI: 10.1002/anie.202109235
- Zhang, S.; Tan, Z.; Zhang, H.; Liu, J.; Xu, W.; Xu, K. An Ir-Photoredox-Catalyzed Decarboxylative Michael Addition of Glyoxylic Acid Acetal as a Formyl Equivalent. Chem. Commun. 2017, 53, 11642–11645. DOI: 10.1039/C7CC06252D
- Guthrie, J. P. Carbonyl Addition Reactions: Factors Affecting the Hydrate–Hemiacetal and Hemiacetal–Acetal Equilibrium Constants. Can. J. Chem. 1975, 53, 898–906. DOI: 10.1139/v75-125