[スポンサーリンク]

化学者のつぶやき

デカすぎる置換基が不安定なリンホウ素二重結合を優しく包み込む

[スポンサーリンク]

不安定なホスファボレンを速度論的にのみ安定化する分子設計により、本来の電子状態のリンホウ素二重結合をもつホスファボレンの合成が初めて報告された。合成したホスファボレンのリンホウ素結合は、隣接基による電子的な影響を無視できるため高い二重結合性をもつ。

いかにして不安定なホスファボレンを合成するのか?

13族と15族元素間の二重結合は、14族元素同士の二重結合と等電子関係ではあるが、その特異な物性や反応性に興味がもたれ、精力的に研究されてきた[1]。中でもリンホウ素二重結合は、周期の異なるリンとホウ素のp軌道の重なりが小さいため、π結合が切れやすい(図1A)[2]。この弱いπ結合に加え、リンの非共有電子対およびホウ素の空のp軌道の存在により自発的に多量化するため、不安定な結合である。そのため、リンホウ素二重結合の形成は長年の課題であった。

リンホウ素二重結合をもつホスファボレンの生成が初めて確認されたのは、1986年、Cowleyらの報告である(図1B)[3]。彼らは環状ジホスファボレタンの熱分解からホスファボレンの生成を質量分析で確認した。その後、ホスファボレンの安定化法がいくつか見出され、その合成と単離が達成されている。1990年にNöthら[4]が、2006年にはPowerら[5]がそれぞれルイス酸/塩基により安定化されたホスファボレンの合成、2022年にはLiuらがPush–Pull効果により安定化されたホスファボレンの合成を報告した(図1C)[6]。しかし、これらの安定化法はリンホウ素二重結合の電子構造の変化が無視できないため、本来の電子構造をもつホスファボレンの合成は未だ達成されていない。

ブリストル大学のMannersらは、速度論的にのみホスファボレンを安定化すれば、電子構造の変化を無視できるリンホウ素二重結合が形成できると考えた。そこで、かさ高い置換基として2,6-ビス(トリイソプロピルフェニル)-3,5-ジイソプロピルフェニル基[7]をもつホスファボレンを設計し、合成に取り組んだ(図1C右下)。

図1. (A) リンホウ素二重結合形成における課題 (B) ホスファボレンの生成を確認した最初の報告例 (C) 安定化されたホスファボレンの合成例および今回Mannersらが合成したホスファボレン

 

“A Crystalline Monomeric Phosphaborene”
LaPierre, E. A.; Patrick, B. O.; Manners, I. J. Am. Chem. Soc. 2023, 145, 7107–7112
DOI: 10.1021/jacs.3c01942

論文著者の紹介

研究者:Ian Manners
研究者の経歴:
1979–1982 B.Sc. in Chemistry, University of Bristol, UK
1982–1985 Ph.D. in Chemistry, University of Bristol, UK (Prof. Neil G. Connelly)
1986–1987 Postdoc, University of Aachen, Germany (Prof. Peter Paetzold)
1988–1990 Research Associate, Pennsylvania State University, USA (Prof. Harry R. Allcock)
1990–1994 Assistant Professor, University of Toronto, Canada
1994–1995 Associate Professor, University of Toronto, Canada
1995–2006 Professor, University of Toronto, Canada
2006–                            Professor, University of Bristol, UK
研究内容:触媒反応を用いた高分子合成、結晶化駆動型自己集積体の合成

論文の概要

図2Aにホスファボレン4の合成経路を示す。まず、ホスフィンカリウム1[8]とジブロモボロン2[9]をトルエン中で反応させ、ホスファボラン3を得た。続いて、得られた3に塩基を作用させ、所望のホスファボレン4の合成を達成した。単結晶X線構造解析により、合成したホスファボレン4のリンホウ素間の結合長は1.741 Åであり、これまで報告されたどのホスファボレンよりも短い値であった。また、4のWiberg結合次数はリンホウ素結合が1.9707、窒素ホウ素結合が0.9526であった。これらは4のリンホウ素結合は二重結合性、窒素ホウ素結合は単結合性が高いことを示している。すなわち、窒素の非共有電子対のホウ素への押し込みによるリンホウ素結合の二重結合性の低下はなく、電子構造の変化を無視できるリンホウ素二重結合の形成に成功した初の報告例となった。

次に、反応性の高い分子との反応からホスファボレン4のリンホウ素二重結合の性質を調査した(図2B)。4はDMAPと反応し4·DMAPが生成した。また、メタノールを作用させると、4は一級ホスフィンとトリメトキシボロンに分解した。一方で、一酸化炭素および二酸化炭素、水素、TMSN3、HCCPh、Ph2COとは反応しなかった。この反応性はDFT計算による軌道解析から説明できる。4のHOMOは立体的に保護されたリンホウ素二重結合に局在している。一方LUMOは、主にホウ素の空のp軌道からなるため、リンと比べ立体的に保護されていない。したがって、HOMOが関与する反応は進行しにくく、LUMOのみが関与する反応は進行しやすかったと考えられる。

図2. (A) ホスファボレン4の合成 (B) ホスファボレン4の反応性の調査および分子軌道解析

以上、本来の電子状態のリンホウ素二重結合をもつホスファボレンの合成が達成された。電子的な影響を受けていないリンホウ素二重結合の詳細な性質解明の続報に期待したい。デカすぎる置換基の優しい抱擁に、不安定だったリンホウ素二重結合も安心して安定化しているはずである。

参考文献

  1. Malik, M. A.; Afzaal, M.; O’Brien, P. Precursor Chemistry for Main Group Elements in Semiconducting Materials. Chem. Rev. 2010, 110, 4417–4446. DOI: 10.1021/cr900406f
  2. Dankert, F.; Hering-Junghans, C. Heavier Group 13/15 Multiple Bond Systems: Synthesis, Structure, and Chemical Bond Activation. Chem. Commun.2022, 58, 1242–1262. DOI: 10.1039/D1CC06518A
  3. Arif, A. M.; Boggs, J. E.; Cowley, A. H.; Lee, J. G.; Pakulski, M.; Power, J. M. Production of a Boraphosphene (RB:PR’) in the Vapor Phase by Thermolysis of a Sterically Encumbered Diphosphadiboretane. J. Am. Chem. Soc. 1986, 108, 6083–6084. DOI: 10.1021/ja00279a091
  4. Linti, G.; Nöth, H.; Polborn, K.; Paine, R. T. An Allene-analogous Boranylidenephosphane with B=P Double Bond: 1,1-Diethylpropyl(2,2,6,6-tetramethylpiperidino)-boranylidenephosphane-P-pentacarbonylchromium. Angew. Chem., Int. Ed. 1990, 29, 682–684. DOI: 10.1002/anie.199006821
  5. Rivard, E.; Merrill, W. A.; Fettinger, J. C.; Power, P. P. A Donor-Stabilization Strategy for the Preparation of Compounds Featuring P=B and As=B Double Bonds. Chem. Commun. 2006, 36, 3800−2. DOI: 10.1039/B609748K
  6. Li, J.; Lu, Z.; Liu, L. L. A Free Phosphaborene Stable at Room Temperature. J. Am. Chem. Soc. 2022, 144, 23691–23697. DOI: 10.1021/jacs.2c11878
  7. Stanciu, C.; Richards, A. F.; Fettinger, J. C.; Brynda, M.; Power, P. P. Synthesis and Characterization of New, Modified Terphenyl Ligands: Increasing the Rotational Barrier for Flanking Rings. Organomet. Chem. 2006, 691, 2540–2545. DOI: 10.1016/j.jorganchem.2006.01.046
  8. Queen, J. D.; Bursch, M.; Seibert, J.; Maurer, L. R.; Ellis, B. D.; Fettinger, J. C.; Grimme, S.; Power, P. P. Isolation and Computational Studies of a Series of Terphenyl Substituted Diplumbynes with Ligand Dependent Lead-Lead Multiple-Bonding Character. J. Am. Chem. Soc. 2019, 141, 14370–14383. DOI: 10.1021/jacs.9b07072
  9. Escudie, J.; Couret, C.; Lazraq, M.; Garrigues, B. New Routes to 2,4-Diphospha-1,3-diboretanes. React. Inorg. Met.-Org. Chem. 1987, 17, 379–384. DOI: 10.1080/00945718708059446
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. Whitesides教授が語る「成果を伝えるための研究論文執筆法…
  2. 銅触媒と可視光が促進させる不斉四置換炭素構築型C-Nカップリング…
  3. ボタン一つで化合物を自動合成できる機械
  4. 3.11 14:46 ②
  5. 特許の基礎知識(2)「発明」って何?
  6. マイクロ波化学の事業化プラットフォーム 〜実証設備やサービス事例…
  7. 2009年人気記事ランキング
  8. 乙卯研究所 研究員募集 第二弾 2022年度

注目情報

ピックアップ記事

  1. 求核的フルオロアルキル化 Nucleophilic Fluoroalkylation
  2. 辻 二郎 Jiro Tsuji
  3. トルキセン : Truxene
  4. 広がる産総研の連携拠点
  5. 「化学研究ライフハック」シリーズ 2017版まとめ
  6. エルマンイミン Ellman’s Imine
  7. Chem-Station 6周年へ
  8. 伝わるデザインの基本 増補改訂3版 よい資料を作るためのレイアウトのルール
  9. 藤嶋 昭 Akira Fujishima
  10. ワイリーからキャンペーンのご案内 – 化学会・薬学会年会参加予定だったケムステ読者の皆様へ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP