[スポンサーリンク]

化学者のつぶやき

η6配位アルキルベンゼンで全炭素(3+2)環化付加

[スポンサーリンク]

ロジウム触媒を用いたアルキルベンゼンと電子不足オレフィンの全炭素(3+2)環化付加反応が開発された。様々な天然物に含まれるジヒドロインデン骨格を簡便かつ高い原子効率で構築できる。

アルキルベンゼンの(3+2)環化付加反応

(3+2)環化付加反応は、1,3-双極子と不飽和結合から高度に官能基化された五員環を構築できる強力な手法である(図1A)[1]。ところが、これまで報告されてきた1,3-双極子はほとんどがヘテロ原子を有しており、全炭素1,3-双極子を用いた例は少ない。一方で遷移金属触媒は、四員環メタラサイクルや金属カルベノイドなどの特異な全炭素双極子やその等価体を生成できる[2]。特にh3配位により生じたトリメチレンメタン錯体は、1,3-双極子として(3+2)環化付加反応を起こす。その代表例として、Trostらが開発したパラジウム触媒を用いたトリメチレンメタンの環化付加反応が知られる(図1B)[3]。本反応では、π-アリルパラジウム錯体の正電荷が脱シリル化により生じた負電荷を安定化する。

以前筆者らは、Rh(III)触媒のh6配位によりアルキルベンゼンのベンジル位が脱プロトン化し、生じたh5-メチレンシクロヘキサジエニル種が電子不足オレフィンに求核付加することを見いだした[4]。一方Cp*Ir錯体にh4配位したo-キノンメチドはN-メチルマレイミドと(3+2)環化付加することが知られており、通常求電子的な3位がh4配位によって求核的な反応性を示す(図1C)[5]。しかし、Rh錯体では同様な反応は進行していない。今回著者らは、配位子の変更によりh5-メチレンシクロヘキサジエニル種が求核剤でなく1,3-双極子として振る舞うことを期待した。実際、適切な配位子をもつRh錯体を用いることでアルキルベンゼンと電子不足オレフィンとの(3+2)環化付加を達成した(図1D)。

図1. (A) 全炭素(3+2)環化付加 (B) 3配位を用いた全炭素1,3-双極子 (C) Ir錯体を用いたo-キノンメチドの(3+2)環化付加 (D) 今回の反応

 

“Catalytic Dehydrogenative (3+2) Cycloaddition of Alkylbenzenes via π-Coordination”

Wu, W.-Q.; Lin, Y.; Li, Y.; Shi, H. J. Am. Chem. Soc.2023, 145, 9464–9470.

DOI: 10.1021/jacs.3c02900

論文著者の紹介

研究者:Hang Shi (石 航) (研究室HP)

研究者の経歴:

–2008                   B.Sc., Hunan University, China
2008–2013 Ph.D., Peking University, China (Prof. Zhen Yang)
2013–2015 Postdoc, Harvard University, USA (Prof. Tobias Ritter)
2015–2018 Postdoc, The Scripps Research Institute, USA (Prof. Jin-Quan Yu)
2018–2023 Assistant Professor, Westlake University, China
2023–                     Associate Professor, Westlake University, China

研究内容:h6配位による芳香環の触媒的官能基化、不斉金属触媒を用いたアミン合成、機能性分子の合成

論文の概要

2,5-ビス(トリフルオロメチル)フェニル基が置換したCp*を配位子にもつロジウム触媒存在下、HFIP中、AgBF4を添加すると、120 °Cでアルキルベンゼン1と1,1-ビス(フェニルスルホニル)エチレン(2)から環化体3が良好な収率で得られた(図2A)。本反応は多様な官能基を有するアルキルベンゼン1a–1eに適用でき、対応する環化体3a–3eを中程度から高い収率で与えた。また2-ナフチル基をもつ1fでは、ベンゼン環側で選択的に環化し二環式化合物3fを与える。さらに4級炭素の構築も可能で、スピロ環化体3hやジアリール3iが得られた。

次に、Cp*Rh錯体に配位したh5-メチレンシクロヘキサジエニル種が1,3-双極子としての性質をもつか確かめるため、電荷密度と分子軌道を計算した(図2B)。その結果、ベンジル位とオルト位は負に帯電しており、イプソ位は正の電荷をもつことがわかった。また、HOMOは主にベンジル位に分布している一方で、LUMOの一部はオルト位に局在化していた。これらの性質は代表的な1,3-双極子であるジアゾメタンに酷似している。

また、反応経路をDFT計算により解析した(図2C)。まず、脱プロトン化により生じたh5-メチレンシクロヘキサジエニル-Rh錯体Int1に対し、2が段階的に付加し、h5-メチレンシクロヘキサジエニル錯体Int3を形成する。続く再芳香族化において、Int3からのヒドリド移動は活性化エネルギーが非常に大きく、h3錯体Int4を経由することが示唆された。アゴスティック相互作用によるInt4の安定化が、ヒドリド移動の鍵であった。そして、TS4を経て再芳香族化し環化体3が得られる。

図2. (A) 最適条件と基質適用範囲 (B) π配位したベンジルカルボアニオンの電荷密度と分子軌道 (C) (3+2)環化付加と再芳香族化における 自由エネルギーの計算値 (kJ/mol) (図2は一部論文SIより転載)

 

以上、アルキルベンゼンを1,3-双極子として用いた全炭素(3+2)環化付加反応が開発された。得られた環化体は様々なインデン誘導体へと変換でき、本反応の天然物合成への応用が期待される。

参考文献

  1. (a) Gothelf, K. V.; Jørgensen, K. A. Asymmetric 1,3-Dipolar Cycloaddition Reactions.Chem. Rev. 1998, 98, 863–910. DOI: 10.1021/cr970324e (b) Wang, Z.; Liu, J. All-Carbon (3+2) Cycloaddition in Natural Product Synthesis. Beilstein J. Org. Chem. 2020, 16, 3015–3031. DOI: 10.3762/bjoc.16.251
  2. Lautens, M.; Klute, W.; Tam, W. Transition Metal-Mediated Cycloaddition Reactions. Chem. Rev. 1996, 96, 49–92. DOI: 10.1021/cr950016l
  3. Trost, B. M. [3+2] Cycloaddition Approaches to Five-Membered Rings via Trimethylenemethane and Its Equivalents. Chem., Int. Ed. 1986, 25, 1−20. DOI: 10.1002/anie.198600013
  4. (a) Kang, Q.; Li, Y.; Chen, K.; Zhu, H.; Wu, W.; Lin, Y.; Shi, H. Rhodium‐Catalyzed Stereoselective Deuteration of Benzylic C–H Bonds via Reversible h6Angew. Chem., Int. Ed. 2022, 61, e202117381. DOI: 10.1002/anie.202117381 (b) Li, Y.; Wu, W.; Zhu, H.; Kang, Q.; Xu, L.; Shi, H. Rhodium‐Catalyzed Benzylic Addition Reactions of Alkylarenes to Michael Acceptors. Angew. Chem., Int. Ed. 2022, 61, e202207917. DOI: 10.1002/anie.202207917
  5. (a) Amouri, H.; Vaissermann, J.; Rager, M. N.; Grotjahn, D. B. Stable o-Quinone Methide Complexes of Iridium: Synthesis, Structure, and Reversed Reactivity Imparted by Metal Complexation. Organometallics 2000, 19, 1740− DOI: 10.1021/om000073r (b) Amouri, H.; Vaissermann, J.; Rager, M. N.; Grotjahn, D. B. Rhodium-Stabilized o-Quinone Methides: Synthesis, Structure, and Comparative Study with Their Iridium Congeners. Organometallics 2000, 19, 5143−5148. DOI: 10.1021/om0005598
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 第38回ケムステVシンポ「多様なキャリアに目を向ける:化学分野の…
  2. メカノケミストリーを用いた固体クロスカップリング反応
  3. 光触媒を用いるスピロ環合成法が創薬の未来を明るく照らす
  4. 「日本研究留学記: オレフィンの内部選択的ヒドロホルミル化触媒」…
  5. サイエンスアゴラの魅力を聞くー「日本蛋白質構造データバンク」工藤…
  6. 2022年度 第22回グリーン・サステイナブル ケミストリー賞 …
  7. 早稲田大学各務記念材料技術研究所「材研オープンセミナー」
  8. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part…

注目情報

ピックアップ記事

  1. 1,2,3,4-シクロブタンテトラカルボン酸二無水物:1,2,3,4-Cyclobutanetetracarboxylic Dianhydride
  2. 菅沢反応 Sugasawa Reaction
  3. ブラン環化 Blanc Cyclization
  4. 生体医用イメージングを志向した第二近赤外光(NIR-II)色素:①単層カーボンナノチューブ
  5. 芳香族ボロン酸でCatellani反応
  6. ケムステの記事が3650記事に到達!
  7. 有機化学実験基礎講座、絶賛公開中!
  8. カーボンナノリングのキーホルダー式固定化法の開発
  9. カーン グリコシド化反応 Kahne Glycosidation
  10. ダニエル・ノセラ Daniel G. Nocera

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

フッ素が実現する高効率なレアメタルフリー水電解酸素生成触媒

第638回のスポットライトリサーチは、東京工業大学(現 東京科学大学) 理学院化学系 (前田研究室)…

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー