[スポンサーリンク]

スポットライトリサーチ

微少試料(1 mg)に含まれる極微量レベル(1 アトグラム)の放射性ストロンチウムを正確に定量する分析技術開発!

[スポンサーリンク]

第527回のスポットライトリサーチは、福島大学大学院 共生システム理工学研究科 分析化学研究室(高貝研究室)の青木 譲(あおき じょう)さんにお願いしました。

高貝研究室では、環境や生体中に存在する超微量成分を分析(分離・定量)するための新しい分析システムを開発しています。具体的には放射性ストロンチウムの迅速分析技術や自動で多段階の分離(Srの単離)と濃縮を行う測定システムの開発などに取り組んでいます。

本プレスリリースの研究は、微量の放射性ストロンチウム定量に関する内容です。放射性ストロンチウム90は、放射性物質の中でも特に分析することが難しいものの一つです。そのため、サンプル量が現実的に少量しか採取できないもの(例えば、涙、粘膜、歯、貴重な環境試料など)については、これまで極微量な放射性ストロンチウムを測定することができませんでした。そこで本研究グループでは表面電離型質量分析装置を用いる計測技術で、1 mg 程度の試料に含まれる極微量レベル(1 アトグラム)の放射性ストロンチウムを正確に定量する分析技術を開発しました。

この研究成果は、「Analytical Chemistry」誌に掲載され、ACS Editors’ choiceにも選定されました。またプレスリリースに成果の概要が公開されています。

Direct Quantification of Attogram Levels of Strontium-90 in Microscale Biosamples Using Isotope Dilution-Thermal Ionization Mass Spectrometry Assisted by Quadrupole Energy Filtering

Aoki Jo, Wakaki Shigeyuki, Ishiniwa Hiroko, Kawakami Tomohiko, Miyazaki Takashi, Suzuki Katsuhiko, and Takagai Yoshitaka

Anal. Chem. 2023, 95, 11, 4932–4939

DOI: doi.org/10.1021/acs.analchem.2c04844

研究室を主宰されている高貝慶隆 教授より青木さんについてコメントを頂戴いたしました!

青木譲さんの研究のバックグランドは、分析化学の「新しい分析方法の開発」にあります。これに放射化学や環境動態、物理化学など学際的・分野横断的に取り入れる柔軟さと、極微量な物質量を高精度に取り扱わなければならないテクニカルな精密さの両面を必要とします。まさに、コツコツと仕事を行いつつ中長期的な広い視野を必要とする領域です。昨今の目新しい分野などに傾倒しがちな風潮に流されず、職人芸のような手芸からオリジナリティを発揮し、フロンティアを築く姿は芸術家にさえ感じます。是非とも、青木さんのスタイルを崩さず、これからも頑張って欲しいと思います。

この表面電離型質量分析による90Sr分析は、豊田(旧姓・伊藤)千尋さん(現:日本原子力研究開発機構)、下出凌也さん(現:三菱マテリアル)からスタートし、今回、青木さんの力で一気に実用化レベルまで羽ばたきました。この方法は、放射化学分析にとどまらず、様々な環境動態を明らかにし、また、今後、多くの原子力発電所が廃炉作業に取り掛かりますがその安全管理・被ばく管理の一助になります。今後、更なる研究展開や波及効果が期待できます。青木さんの今後の展開に大きな期待を寄せています。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

本研究では、小動物の歯や涙等の微少生体試料中に含まれる極微量な放射性ストロンチウム(90Sr)を正確に定量する分析技術の開発に成功しました。

90Srはβ線のみを放出する人工放射性核種であり、カルシウムと似た化学的特性から骨や歯などの硬組織に蓄積する特徴を持ちます。しかし放射線を計測する一般的な90Srの分析法では、90Srの蓄積を評価するために、少なくとも数g~数百グラムの試料が必要でした。そのため、サンプル量の確保が難しい涙・唾液などの生体成分や小動物の歯などの生態試料を分析できないという課題がありました。

そこで私たちは、同位体希釈-エネルギーフィルター搭載表面電離型質量分析計(ID-RPQ-TIMS)を利用して、試料のマトリックスによって変化する測定干渉ノイズを簡単な四則演算で除去する補正方法を構築しました。これにより、ミリグラム(mg)レベルのわずかな量の試料に含まれるアトグラム(ag: 10-18 g)レベルの90Srを正確に定量することができるようになりました。

ID-RPQ-TIMSでは、Srスパイク(天然Srと同位体比が異なるSr)を利用することで試料に含まれる天然Srの含有量を決定し、同時に90Sr/Srの同位体比を計測することができます。しかしこの方法では、試料の種類によって何故か90Srを計測する際に測定干渉ノイズが生じて、微量な90Srを計測することができませんでした。私たちはこの測定干渉ノイズの原因が、天然Sr(主に88Sr)によるピークテーリングではないかと考えました。その過程で、“88Sr量”と“測定干渉ノイズ”に高い相関性があることに気づき、ノイズ補正式を導き出すことに成功しました。その結果、試料の種類に依らず、測定干渉ノイズを除去して正確な90Sr量を測定することが可能となりました。これにより、微少な試料を一回の測定で分析し、試料に含まれるagレベルの90Srと天然Srを同時に定量することができるようになりました。

Analytical Chemistry

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究で工夫したポイントは、試料によって変動する微少な測定干渉ノイズを簡単に除去することです。研究を進めていくなか、干渉ノイズの主な要因は、88Srのピークテーリングであることが分かりました。従来のやり方でノイズを除去するためには、測定に使用する天然Sr量を一定量に固定することが最も容易なやり方でした。しかし分析対象である生体試料は試料量が少なく、Sr濃度が多様ですし、放射性濃度だけでなく、天然Srの濃度も同時に測定できた方がより活用の範囲が広がると思いました。そのため私は、様々な試料組成に適応できる、より簡単なノイズの低減方法を模索しました。検証実験において、様々な濃度の天然Srの測定干渉ノイズを単調で地味な作業でしたが半年間計測し続けました。その結果、測定干渉ノイズは天然Sr量と高い相関があることが統計的に明確になり、非常に微量な90Srの正確な定量値を導き出すことができるようになりました。蓄積したデータから相関を確認した時、非常にうれしかったことを覚えております。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

本研究において難しさを感じた点は、本分析技術の性能を証明することです。本分析法は、今までの分析方法で達成できなかった微少な生体試料中の90Srを定量します。しかし、その分析を他の方法でクロスチェックしようと思っても、既存の方法は他にありません。この方法が正しいことを証明するための検証が非常に難しかった点です。同様に、この分析性能の証明に有用である標準物質(低濃度な90Sr濃度が値付けされた歯など)がありませんでした。そこで、イノシシなどの大型動物の歯牙であれば試料量を確保することができたので、地元も皆様の協力を得てイノシシを捕獲、解体しました。またイノシシの歯牙の収集は、獣医さんや東北大学の歯学部の先生に抜歯の作法を教えて頂き、実施いたしました。そして、このイノシシの歯牙を用いて放射線分析法(既存法)とのクロスチェックも実施し、本分析法の性能を証明することができました。私は、このイノシシの歯牙分析するにあたり大変貴重な体験ができました。協力いただきました皆様に大変感謝しております。ありがとうございました。

Q4. 将来は化学とどう関わっていきたいですか?

博士後期課程修了後は、国立研究開発法人で研究職に就きたいと考えております。そして現在学んでいる分析化学を軸に、地球科学、考古学、原子力など様々な分野に研究を展開したいと考えております。今後は、様々な分野の方々と交流を深め、知識の蓄積や技術の習得に励みたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私は修士2年生のときからこの研究に取り組んでおります。本成果が出るまでに約3年間かかりました。そのため、周りの学生が研究成果を上げるたびに、内心焦りを感じておりました。ですが、焦らず直面した課題について先生方に相談し、頂いたアドバイスを信じて、コツコツとデータの蓄積を進めてよかったです。学生の方へのメッセージとなりますが、課題をあまり抱え込まず先生方に相談すること、そして簡単にあきらめないことが大事かと思います。現在、私は、TIMSこそが90Srを分析する最良の手段であり、自分の相棒であると感じております。皆様の研究における最高の相棒は何でしょうか?

最後に、本研究についてご指導いただきました高貝慶隆先生、鈴木勝彦先生宮崎隆先生若木重行先生石庭寛子先生、川上智彦先生にこの場を借りて感謝申し上げます。

研究者の略歴

名前:青木 譲(あおき じょう)

所属:福島大学大学院 共生システム理工学研究科 分析化学研究室(高貝研究室)

研究テーマ:表面電離型質量分析計を利用した放射性核種分析法の開発

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 触媒のチカラで不可能を可能に?二連続不斉四級炭素構築法の開発
  2. 2024年度 第24回グリーン・サステイナブル ケミストリー賞 …
  3. シュガーとアルカロイドの全合成研究
  4. 2次元分子の芳香族性を壊して、ホウ素やケイ素を含む3次元分子を作…
  5. 不安定さが取り柄!1,2,3-シクロヘキサトリエンの多彩な反応
  6. 電気化学の力で有機色素を自在に塗布する!
  7. 【書籍】液晶の歴史
  8. 量子アルゴリズム国際ハッカソンQPARC Challengeで、…

注目情報

ピックアップ記事

  1. 3Mとはどんな会社? 2021年版
  2. 点群の帰属 100 本ノック!!
  3. 芳香族性に関する新概念と近赤外吸収制御への応用
  4. 位相情報を含んだ波動関数の可視化に成功
  5. 研究室の大掃除マニュアル
  6. ADEKAとAGCが女優出演の新作CMを放映
  7. 自己多層乳化を用いたマトリョーシカ微粒子の調製 〜油と水を混ぜてすぐ固めるだけ〜
  8. レドックス反応場の論理的設計に向けて:酸化電位ギャップ(ΔEox)で基質の反応性を見積もる
  9. 生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発
  10. 化学者だって数学するっつーの! :定常状態と変数分離

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年6月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP