[スポンサーリンク]

スポットライトリサーチ

酵素の分子個性のダイバーシティは酵素進化のバロメーターとなる

[スポンサーリンク]

第498回のスポットライトリサーチは、東京大学 大学院工学系研究科 応用化学専攻 野地研究室に在籍されていた佐久間 守仁(さくま もりと)博士にお願いしました。

野地研究室ではATP合成酵素の1分子生物物理学を専門とし、独自の1分子計測技術を駆使して生体分子のメカニズムを解明しています。さらにそこから得られた知見と技術を総動員して、生体分子システムの再構成にも取り組んでいます。そしてこれら基礎的研究と連動して、超高感度バイオ分析技術や高精度分子スクリーニング技術に関する応用研究も推進しています。

本プレスリリースの研究内容は酵素1分子の活性計測についてで、酵素1分子を封入した微小リアクタを多数用意し、その中で酵素活性を計測する手法、デジタルバイオ分析法を用いて、酵素分子集団中の個々の分子の多様な機能状態を定量計測しました。この研究成果は、「Journal of the American Chemical Society」誌に掲載され、プレスリリースにも成果の概要が公開されています。

Genetic Perturbation Alters Functional Substates in Alkaline Phosphatase

Morito Sakuma, Shingo Honda, Hiroshi Ueno, Kazuhito V. Tabata, Kentaro, Miyazaki, Nobuhiko Tokuriki* and Hiroyuki Noji*

J. Am. Chem. Soc. 2023, 145, 5, 2806–2814

DOI:doi.org/10.1021/jacs.2c06693

研究室を主宰されている野地博行 教授より佐久間博士についてコメントを頂戴いたしました!

この論文は本当に苦労しました。佐久間守仁さんが博士研究員として私の研究室に参加した時、研究テーマは1分子酵素活性計測と進化分子工学に関するものでしたが、今回の論文とは異なるものでした。このプロジェクトは思ったように進まなかったのですが、佐久間くん自身がそのときの実験結果に基づいて検討した結果、今回の論文の構想が生まれました。最初は、彼が東大所属の間に得たデータで論文を投稿したのですが、技術的にも概念的にも新しいものであったためかeditorの段階で断られることが続きました。そこで、彼の現在のボスであると徳力さん(UBC)の了解を得てプロジェクトを継続し、その結果完成度の高い内容にすることができました。しかし、JACS誌での査読は非常にタフでした。査読者から大量な追加データを要求されたうえ、一度はrejectされてしまいました。しかし、editorがrejectの根拠とした査読コメントはその妥当性に疑問があったため、editor等に対して説明等を繰り返しました。その結果、最終的には我々の意見がほぼ完全に求められacceptに至りました。私はこれまで相当に困難な査読プロセスを何度も経験しましたが、その中でも1・2を争うほどのタフな経験でした。このような困難な査読プロセスを共に闘った佐久間くんとは戦友のような気持ちです。彼は、この後の研究のキャリアでも困難に遭遇すると思いますが、きっとタフに乗り越えてくれるものと思います。ちなみに、JACS誌との交渉では某N先生には大変貴重なアドバイスをいただきました。この場を借りてお礼申し上げます(諸事情のためイニシャルとさせてもらいます)。今回の査読のエピソードをより詳しく知りたい方がおられたら是非佐久間くんにコンタクトしてみてください。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

細胞内反応の担い手である酵素は,それぞれがユニークな立体構造を持ちます。一方で、酵素分子集団において、個々の酵素分子は多様な構造や機能状態をもつことができ、さらにこれらの多様性は、酵素が進化のプロセスにおいて新しい機能を獲得するために重要であると考えられてきました。しかし、酵素の分子毎の機能の違い、すなわち分子の個性をハイスループットに計測することは難しく、分子の個性の広がりと遺伝子変異や新規機能との関係は明らかとされてきませんでした。

本研究グループでは、独自開発してきた微小液滴形成アレイデバイスを用いて、1,000を超える1分子活性を並列して計測し、酵素分子の個性の広がりを、酵素分子集団中の活性のばらつきから評価しました(図1)

図1:個々の分子の触媒活性計測による、機能状態の多様性の解析方法。機能状態の多様性は1分子計測によって得られた酵素の活性分布から評価した。

モデル酵素である野生型アルカリフォスファターゼ(AP)と、1アミノ酸変異を持つ69の変異体APを計測すると、野生型AP と比べると変異型APの多くで個性の広がりが大きくなっていることがわかりました(図2)。

図2:遺伝子変異による、野生型酵素の活性分布の変化

さらに興味深いことに、広い分子個性を示す変異型AP が、本来の基質とは異なる化学構造を持つ基質(非天然基質)に対して反応性が高いことが明らかとなりました(図3)。これらの結果は、酵素が遺伝子変異によって柔軟に機能状態を多様化させながら新機能を獲得することを裏付けるもので、酵素の進化分子工学にも応用可能な知見です。

図3:酵素の機能状態の多様性と非天然基質への反応性の相関。x軸は酵素活性の分布(変動係数, %), y軸は野生型に対する変異体の活性比を示している。非天然基質であるbpNPP (A)とpNPPP (B)を用いて、バルク溶液中で酵素活性計測した。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

特に思い入れがあるのは、酵素の個性の広がりと非天然基質に対する反応性の相関を発見したことです。全ての変異体の1分子計測を行ったことによって、遺伝子変異によって酵素の個性の広がりが多様に変化することがわかりました。それだけでも面白い結果でしたが、この個性の広がりが酵素の何らかの機能と関連があることがわかれば、もっと面白くなるのではないかと考えました。当時、酵素分子の構造の多様性と非天然基質との反応性との相関について報告がありました。この結果は、私たちが計測している酵素の個性の広がりに近いと考えて、様々な個性の広がりをもつ変異体の非天然基質への反応性を計測しました。幾つかの変異体は計測に必要な量精製が出来ず、がっかりすることも多かったのですが、相関が見えた時はとても嬉しかったです。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

酵素の個性を直接計測するという独自性の高い研究であったため、何をどこまで計測するか、また、論文のストーリーをどのように書くかが難しかったです。計測や論文作成において、道を見失わないようにするために、よく周囲の人とディスカッションを行うようにしていました。データに対する客観的な意見をもらうことで、頭を整理することができ、さらに新しい視点を得ることができたことが、研究をまとめる上でとても大事だったと思います。また、論文投稿と査読への対応も大変でした。是非野地先生からのコメントを読んでいただければと思います。

Q4. 将来は化学とどう関わっていきたいですか?

顕微鏡、微細加工、生化学、化学技術等を組み合わせた独自の計測技術を用いて、酵素の進化のメカニズム解明や、より良い酵素の開発を行なっていきたいと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

今回の研究は、初めから強い仮説をもって進めたものではありません。別の実験で得られた変異体に興味をもち、計測とディスカッションを重ねていくにつれて、研究は姿を変え、最後には酵素の個性と進化に辿り着きました。とにかく手を動かすことで、思いもよらないデータが得られ、多くの方とのディスカッションを通じて形になっていくことが、研究の醍醐味なのではないかと考えています。

また,査読のプロセスでレビュアーからの要求に応えていく(あるいは説得していく)のはかなり大変な作業ではありましたが,たとえ一度Rejectされても、諦めずに戦うことの大切さを学ぶことができました。

この成果を得るにあたり、多大なご指導いただきました野地先生、徳力先生、そして共著者の皆様、研究室のメンバーとスタッフの皆様には心から感謝申し上げます。

研究者の略歴

佐久間 守仁(さくま もりと)

所属:ブリティッシュコロンビア大学 マイケルスミス研究所 博士研究員(徳力伸彦教授 研究室

略歴:
2017年3月 東京大学 物理学科 博士後期課程 修了(樋口秀男教授 研究室

2016年4月−2017年4月 日本学術振興会特別研究員DC2

2017年5月−2019年3月 東京大学 大学院工学系研究科 応用化学専攻 特任研究員(野地博行教授 研究室

2019年4月− 現職

2020年4月−2022年9月 日本学術振興会海外特別研究員

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 【環境・化学分野/ウェビナー】マイクロ波による次世代製造 (プラ…
  2. ペーパーミル問題:科学界の真実とその影響
  3. E-mail Alertを活用しよう!
  4. アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化
  5. ボールミルを用いた、溶媒を使わないペースト状 Grignard …
  6. 付設展示会に行こう!ー和光純薬編ー
  7. プロトン共役電子移動を用いた半導体キャリア密度の精密制御
  8. ニンニクの主要成分を人工的につくる

注目情報

ピックアップ記事

  1. エイダ・ヨナス Ada E. Yonath
  2. C(sp3)-Hアシル化を鍵とするザラゴジン酸Cの全合成
  3. アフマトヴィッチ反応 Achmatowicz Reaction
  4. 常温常圧アンモニア合成~20年かけて性能が約10000倍に!!!
  5. Horner-Emmons 試薬
  6. Micro Flow Reactorで瞬間的変換を達成する
  7. コルチスタチン /Cortistatin
  8. 米国の博士研究員の最低賃金変更
  9. 有機合成化学協会誌2023年9月号:大村天然物・ストロファステロール・免疫調節性分子・ニッケル触媒・カチオン性芳香族化合物
  10. 学術論文を書くときは句動詞に注意

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年4月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

第18回 Student Grant Award 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブルケミストリーネットワーク会議(略称:JAC…

杉安和憲 SUGIYASU Kazunori

杉安和憲(SUGIYASU Kazunori, 1977年10月4日〜)は、超分…

化学コミュニケーション賞2024、候補者募集中!

化学コミュニケーション賞は、日本化学連合が2011年に設立した賞です。「化学・化学技術」に対する社会…

相良剛光 SAGARA Yoshimitsu

相良剛光(Yoshimitsu Sagara, 1981年-)は、光機能性超分子…

光化学と私たちの生活そして未来技術へ

はじめに光化学は、エネルギー的に安定な基底状態から不安定な光励起状態への光吸収か…

「可視光アンテナ配位子」でサマリウム還元剤を触媒化

第626回のスポットライトリサーチは、千葉大学国際高等研究基幹・大学院薬学研究院(根本研究室)・栗原…

平井健二 HIRAI Kenji

平井 健二(ひらい けんじ)は、日本の化学者である。専門は、材料化学、光科学。2017年より…

Cu(I) の構造制御による π 逆供与の調節【低圧室温水素貯蔵への一歩】

2024年 Long らは、金属有機構造体中の配位不飽和な三配位銅(I)イオンの幾何構造を系統的に調…

可視光活性な分子内Frustrated Lewis Pairを鍵中間体とする多機能ボリルチオフェノール触媒の開発

第 625 回のスポットライトリサーチは、名古屋大学大学院 工学研究科 有機・高…

3つのラジカルを自由自在!アルケンのアリール-アルキル化反応

アルケンの位置選択的なアリール-アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP