[スポンサーリンク]

化学者のつぶやき

ADC迅速製造装置の実現 -フローリアクタによる抗体薬物複合体の迅速合成-

[スポンサーリンク]

 

抗体薬物複合体 (Antibody-drug conjugate:ADC) は、特定の分子を狙った抗体に抗がん剤などを結合させ、標的への送達性を強力に高めた医薬品モダリティである (関連ケムステ記事参照)。ADC に用いられる抗体は高分子化合物 (バイオ医薬品) であるがゆえ、その製造には多くの時間を有する。
一方、従来のバッチ式合成から連続フロー合成への移行は、医薬品、ファインケミカル、香料などの生産において推進されている。その合成ターゲットはこれまで低分子化合物が大部分であったが、本報告では高分子である ADC に対しておそらく世界で初めてフロー法を適用した。

概要

味の素株式会社の松田豊 (第37回ケムステVシンポ講師、紹介記事はコチラ)、中原祐一らは、抗体薬物複合体 (ADC) をフローリアクタで合成する手法を報告した。マイクロミキサーをタンデムにつないだリアクタ装置を使い、抗体の還元反応と薬物とのコンジュゲーションをワンポットで行い、マシンタイム 5 分以内で抗体を ADC へと変換することに成功した[1]。まさに、抗体を迅速かつ閉鎖系にて ADC へと変換できる装置を実現したことになる。本論文は Organic Process Research&Development 誌の Front cover にも選ばれている (Figure 1)。

Figure 1 OPR&D 誌のFront cover(Link:https://pubs.acs.org/toc/oprdfk/26/9
(Reproduced with permission from reference 1. Copyright 2024 American Chemical Society)

背景

抗体システインの鎖間ジスルフィドを部分的に還元し、得られたチオールに Cys maleimide カップリングによって高活性 Payload とコンジュゲーションさせる手法は、伝統的かつ最も汎用的に使われている ADC 製法である (Figure 2)[2]。これまでに、8 つの市販の ADC がこの手法で作られているが、その全ての製造において、伝統的なバッチリアクタが使われていた。バッチリアクタを用いた反応は、しばしばスケーラビリティに難があることがあり、特に抗体薬物複合体の薬効・安全性に大きな影響を及ぼす薬物抗体比 (抗体に対するコンジュゲーションしている薬物比率、drug-to-antibody ratio: DAR) はスケールによって変わることがある[3]。それゆえ、抗体薬物複合体を製造する際には、詳細な design of experiment (DOE) 検討が必要であった。

そこで著者らは、このバッチ反応の潜在的な課題を解決する手法として、フローリアクタを利用した連続フロー生産(Continuous Production)に着目した。連続フロー生産は製造プロセスが稼働している期間中,連続的に原料又は混合物が製造工程内に供給され,生産物が継続的に取り出される生産方法である。フロー合成の手法の1つとしてフローマイクロリアクター(Flow Micro Reactor, FMR)が注目されている[4]。FMRはマイクロ空間内で生じる現象を利用し,従来のバッチ型の反応では制御が難しい高速混合や反応熱を精密に制御し,高機能な材料を高い収率で得られるというメリットがある。またホットスポット発生の抑制といった超低温での温度制御が必要なくなることなどから使用するエネルギーの観点からも効率の良いプロセスであると言われており,環境に優しい生産方法としても注目されている生産技術の1つである。著者らは、このホットスポット抑制というFMRの利点を利用して、ADC の還元反応の scale-gap を解消できると考えた。

また、フローリアクタの利用は ADC 製造現場の安全性の観点からも利点があった。ADC の薬物として使われる低分子(通称Payload)は、超高活性であることが多く(通常サブnM ~ pM レベルの IC50)、製造現場では特別な封じ込め施設 (High-potent active pharmaceutical ingredients (HPAPIs) 施設と呼ばれる) が必要となる。FMR はリアクタとチューブ全てが閉鎖系で行われるため、製造オペレーターが HPAPI 物質に曝露されるリスクを低減することもできる。このように、ADC のスケールアップの簡便さと製造現場の環境という両面から、フローリアクタによる ADC 製造のニーズが高まっていた。

Figure 2  概要 (a) Cysteine 型の ADC 合成、(b) フローリアクタによる ADC 合成
(Reproduced with permission from reference 1. Copyright 2024 American Chemical Society)

論文の内容

フローリアクタの検討において、重要なことは ① 適切な形状のミキサーの選択、② 適切なリアクタ (チューブの長さ) の選択、③ 連続生産に耐えうる迅速合成プロセスの確立、である。

① 適切な形状のミキサーの選択

一般的に速度論支配的な反応がフロー合成には向いていると言われている。マイクロリアクタの反応空間では、バッチ反応よりも迅速混合を可能とするため、速度論支配をより顕著に具現化することができる。そこで、鍵となるのが適切なミキサーの選定である (Figure 3)。著者らは、ミキサーの混合性を評価するため、Villermaux-Dushman反応 [5] を実施した。Figure 3d にあるように、混合性の違いによって得られる生成物が異なり、混合性が悪い際に主生成物となるヨウ素の吸光度を測定することで、混合性能を評価することができる。その結果、T 字型のミキサーが最も良好であった。

Figure 3  様々な形状のミキサー (a)T字型ミキサー、(b) V字型ミキサー、(c)ボルテックス型ミキサー、(d) Villermaux-Dushman 反応
(Reproduced with permission from reference 1. Copyright 2024 American Chemical Society)

② 適切なリアクタの選択

続いて著者らはリアクタ内径の検討を実施した。著者らが利用したシステムは還元反応と conjugation 反応をリアクタ内で効率的に完結させる。著者らは流系を変えたいくつかのリアクタを得られた ADC の DAR を測定することで評価し、1.00 mm 未満の流系であることが混合性を保持し、狙いの DAR で ADC を得るために必須であることを確認した。最終的には熱伝導による反応の高速化と反応時間のバランスを考慮し、内径1.00 mm のリアクタを選択した。

③ 連続生産に耐えうる迅速合成プロセスの確立

フローリアクタを製造に使うことを考えると、マシンタイム (抗体がシステム内に滞留している時間) を 5 分以内にすることを目的とした。そうすることにより、グラムスケールの ADC であっても、1 時間以内に反応が完結することになる。Cysteine conjugation の律速段階は還元段階にあると考え、その反応時間の検討を実施した。結果的に、還元反応のマシンタイムを 3 分、その後の Conjugation を 1.5 分の条件を見出した。これにより、原料の抗体をリアクタに加えて、装置を起動さえすれば 5 分以内に抗体薬物複合体を調整できることを見出した。さらに、3 種類の抗体、3 種類の薬物を使用して合計 9 種類の抗体薬物複合体の調製に成功し、このリアクタ反応の汎用性を証明した (Figure 4)。どの ADC 合成においても、DAR は狙い通り3~4の範囲であり、凝集の増加は見られなかった。これらの結果から、本リアクタ反応は ADC 製造に現実的に用いることができるポテンシャルがあることが実証された。

Figure 4 9 種類の ADC 合成
(Reproduced with permission from reference 1. Copyright 2024 American Chemical Society)

今後の展開

著者らは今回、フローリアクタが抗体薬物複合体などの bioconjugates の製造に有効であることを示した。特に、短いマシンタイムで凝集を抑えながら bioconjugation 反応を実施できる点、オペレーターが高活性薬物に曝露されるリスクを減らせることなど、抗体薬物複合体の合成にフローリアクタを利用する利点は多い。今後、フローリアクタを膜精製装置と繋げることで合成から精製まで一気通貫で実施するなど、更なるシステムの改善を行っていく予定である。
さらに、著者らは、フローリアクタのバイオ医薬品への応用を積極的に行っており、ごく最近では迅速的な Protein PEGylation への応用を報告した[6] (こちらはマシンタイム 2 秒未満で、protein の選択的 PEG 化に成功している)。
更なるフローリアクタのバイオ医薬品分野への応用を期待したい。

参考文献

[1] Nakahara, Y.; Mendelsohn, B. A.; Matsuda, Y. Antibody-Drug Conjugate Synthesis using Continuous Flow Microreactor Technology, Process Res. Dev. 2022, 26, 2766–2770, DOI: 10.1021/acs.oprd.2c00217.
[2] Matsuda, Y.; Mendelsohn, B. A. An Overview of Process Development for Antibody-Drug Conjugates Produced by Chemical Conjugation Technology. Expert Opin. Biol. Ther. 2021, 21, 963–975, DOI: 10.1080/14712598.2021.1846714.
[3] Tawfiq, Z.; Matsuda, Y.; Alfonso, M. J.; Clancy, C.; Robles, V.; Leung, M.; Mendelsohn, B. A. Analytical Comparison of Antibody-Drug Conjugates Based on Good Manufacturing Practice Strategies, Anal. Sci. 2020, 36, 871–875, DOI: 10.2116/analsci.19P465.
[4] Bauma A, M.; Moody, T. S.; Smyth, M.; Wharry, S, Perspective on Continuous Flow Chemistry in the Pharmaceutical Industry, Process Res. Dev. 2020, 24, 1802–1813, DOI: 10.1021/acs.oprd.9b00524.
[5] Reckamp, J. M.; Bindels, A.; Duffield, S.; Liu, Y. C.; Bradford, E.; Ricci, E.; Susanne, F.; Rutter, A. Mixing Performance Evaluation for Commercially Available Micromixers Using Villermaux–Dushman Reaction Scheme with the Interaction by Exchange with the Mean Model, Process Res. Dev. 2017, 21, 816–820, DOI: 10.1021/acs.oprd.6b00332.
[6] Nakahara, Y.; Endo Y.; Takahashi, K.; Kawaguchi, T.; Keisuke, K.; Y. Matsuda, A. Nagaki, A Manufacturing Strategy Utilizing a Continuous Mode Reactor toward Homogeneous PEGylated Bioconjugate Production, ChemRxiv2023. DOI: 10.26434/chemrxiv-2023-c1pk9.

関連動画

第37回ケムステVシンポのアーカイブ動画

関連記事

37回ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」を開催します!
抗体-薬物複合体 Antibody-Drug Conjugate
松田 豊 Yutaka Matsuda
MEDCHEM NEWS 30-3号「メドケムシンポ優秀賞」

アジフェーズ法 AJIPHASE Method
抽出精製型AJIPHASE法の開発

関連書籍

バイオ医薬: 基礎から開発まで

バイオ医薬: 基礎から開発まで

¥4,780(as of 02/23 18:57)
Amazon product information
次世代医薬とバイオ医療

次世代医薬とバイオ医療

¥5,390(as of 02/24 10:33)
Amazon product information
Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 新生HGS分子構造模型を試してみた
  2. 有機化合物のスペクトルデータベース SpectraBase
  3. 化学産業における規格の意義
  4. TEtraQuinoline (TEQ)
  5. カーボンナノチューブをふりかえる〜Nano Hypeの狭間で
  6. Bayer Material Scienceの分離独立が語るもの…
  7. 「有機合成と生化学を組み合わせた統合的研究」スイス連邦工科大学チ…
  8. 分子間相互作用の協同効果を利用した低対称分子集合体の創出

注目情報

ピックアップ記事

  1. 研究室の大掃除マニュアル
  2. 文具に凝るといふことを化学者もしてみむとてするなり : ③「ポスト・イット アドバンス2」
  3. NMR化学シフト予測機能も!化学徒の便利モバイルアプリ
  4. 【悲報】HGS 分子構造模型 入手不能に
  5. 塩化ラジウム223
  6. 化学産業を担う人々のための実践的研究開発と企業戦略
  7. 会社説明会で鋭い質問をしよう
  8. ペプチドの特定部位を狙って変換する -N-クロロアミドを経由するペプチドの位置選択的C–H塩素化-
  9. フリッチュ・ブッテンバーグ・ウィーチェル転位 Fritsch-Buttenberg-Wiechell Rearrangement
  10. ホウ素と窒素固定のおはなし

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年4月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー