[スポンサーリンク]

一般的な話題

ポンコツ博士の海外奮闘録XVI ~博士,再現性を高める②~

[スポンサーリンク]

ポンコツシリーズ

国内編:1話2話3話

国内外伝:1話2話留学TiPs

海外編:1話2話3話4話5話6話7話8話

続きだよ9話10話11話12話13話14話15話

第16話:ポンコツ博士,再現性を高める②

ポンコツ化学者,精製作業を戒める

化学実験において精製作業は苦行であるが,極めて重要な工程である。生物活性評価に重きを置く研究では合成ルートが美しいかよりもそのルートで化合物を精製できて再現性よく純度の高いものができるのか,サンプルの状態(シロップ,粉末等)を常に一定に供給できるのか,が真のエンドポイントになる。したがって,見栄え重視で精製作業を侮る工程が合成ルートに潜在すると後々,躓きやすい(気がする)。

ラボに来て最も衝撃を受けた点は,一部の院生が「最初の小スケールだけPTLCで精製して綺麗なデータをとれたら,最後の方でHPLCかけて綺麗になったらいいや」と思っていたのか,目的物と副生成物がやけにどんかぶりするルート設定をしていたことやその影響でスケールアップ時の手カラム精製が汚かったことである。幸い,チーム内の同僚ポスドクらとはこういったトラブルをフォローしあえたので助かった。

そういえば筆者が若かりし頃「in vitro程度の生物活性が人によってブレるのであれば,生物系研究者が10%,化学系研究者が90%の責任を負うと思え。なぜなら,白い粉からサンプルの真の状態を把握して考えられる人間はその多くが化学者だからだ」や「企業は鬼畜だ。最終精製物を作っても”含水率がちょっと高いですね。水もコンタミなんで分けてください”と言われるから…」と聞かされたことがある。当時は世の中って残酷かつ鬼畜だなぁ…と感じていたが,基礎化学研究から発展させて物事をさらに進めるためには,このような姿勢を常に維持できるか,が重要なのかなぁと最近感じている。

ポンコツ精製マン,新必殺技を披露する

またポエミングが始まって話が逸れそうなので,早速桐山バイオタージの使い方について解説したい。桐山バイオタージに必要なものとしては①桐山ロート②Samplet ③吸引できる受けフラスコである。SampletはBiotageさんのSfarカラムにdry loadingができるオプション品である。つまり,DCMやアセトンなどの揮発しやすい溶媒で溶解した混合物をチャージした後,ダイヤフラムで減圧乾燥や空気 or N2ブローで除媒させることでシリカゲルや珪藻土(セライト)にサンプルを吸着させてチャージできる代物である。山善さんのマシンにもdry loading用のInject columnというものがあるようだ(山善さんのマシンも非常に良いと聞いている)。

一方,dry loadingではサンプルの粘度が高い場合はチャージすることに大変苦労する。実際,筆者のとある混合物はかなりねっとりちゃんなサンプルだったため,Sampletのフィルター部分で見事に止まってしまった(Fig. 1A)。その昔,ゴリ押し陽圧チャージでサンプル層を全て吹き飛ばしたことがある筆者は,吸引ろ過マトのように陰圧チャージできる器具を探していたところ,桐山ロートがSampletとかなり相性が良いことに気がついた。

Fig. 1) 桐山バイオタージによるSampletの吸引チャージ

Biotageさんはもしかして筆者がこの事実に気づくことを予見していた…?と疑心暗鬼に駆られたが,いずれにせよ詰まったサンプルを吸引チャージできて綺麗に単離できた。そして,感謝を込めてこの手法を「桐山バイオタージ」と呼ぶことにした(筆者のTwitterに感動をアップするとBiotageさんに見つかってインタビューを受けた)。本手法は,写真のように桐山ロートよりも小さいサイズでも吸引でき,チャージ中にお漏らししても桐山ロートと下の受け皿を洗い込むことで容易に回収できる。筆者は,汎用性の高い精製テクニックとして筆者の48の殺サンプル技…実験必殺技の1つとして認定した。噂によると本手法は山善さんのInject columnのチャージにおいても効果は抜群のようだ。

ポンコツセコンド,弱点をカバーする

一方,Sampletにも弱点はあって,あまりにもねっとりした化合物はFig. 1Cのようにうまく均一チャージできないので注意してほしい(今回はこれで分かれたのでラッキー)。この問題における筆者の対処法は,Fig. 2のようにチャージ前にDCMやアセトンでフィルターを濡らした後,少し乾かしてからねっとりサンプルをチャージするようにしている。イメージとしてはPTFE製のフィルターで水系溶媒を濾過する感覚である。PTFEフィルターにそのまま水溶液をぶっこむとうまく濾過できず,フィルターの破損や逆流等のリスクがあるため,事前にエタノール等で親水性にしてからフィルターをかけることが定法だが,要はその要領と同じである。

Fig.2) 最初にちょっと湿らすぜチャージ

その他,メーカーは推奨していないだろうが,詰まりやすいフリット部分を開けて中のシリカor珪藻土(セライト)にダイレクトにチャージしたのちガラス棒などで混ぜ混ぜするアイデアもありである(シリカチャージ時の発熱に注意,ヘキサンでちょっと先に湿らすと良い)。また,Biotageさんから空のSampletやSfarカラムの空ボトルが売ってあるので,フリットで詰まりそうなイメージがあれば自分で詰めることをおすすめする。

筆者の場合,10 g用のSampletに30 gのクルードをチャージできたが無理にチャージしたために前処理に時間がかかったことや(Fig. 3),50-100 gのクルードを10 g用Sampletにチャージすることは流石に不可能だったため,最近はFig. 4のような自分でシリカゲルやセライトをまぶして濃縮後,空ボトル(50 g-100 g)をサンプレット代わりに利用してさらに倍!というカラムスタイルを愛用している。一応,実績としてRf =0.1の差しかない60 gの混合物を手詰め60μmシリカ-100 gx2本+20μmシリカ-50 gのスタイルの結果,溶媒量6L30分でほぼ完璧に一回で分けることができた。60 gの混合物を30分で分け切れた事実は,実験現場の人にはなかなか衝撃を与えることができる内容ではなかろうか。筆者の必殺精製技「HUNTER×HUNTERの修行のような寝ながらカラム」をせずに,濃縮中に落ち着いて睡眠を取れるぞ!

Fig. 3) 30 gクルードのせチャージ(の10gをのせた時の写真)+60μm-100g sfarカラム+20μm-50gによる2段構えで緑のゴミを全力で食い止めたシーン。

Fig. 4) クルード60gをセライトにまぶしてチャージ後,黄色い部分(ゴミ)が真ん中の手詰め60μm-100gカラムで見事に食い止められたことで,精製にうるさい筆者を唸らせたワンシーン

ポンコツ・マ?氏,有用性を実感する

ここまでは順相系での有用性を説明をしたが,Sampletは逆相用(中身が逆相シリカor珪藻土)もある。これが本当にめちゃくちゃ良い代物であるので,逆相Sfarを使用する場合は必ず使用することをお勧めする。ガードカラム代わりになって本体内の逆相シリカが汚れにくく再使用回数も増えるし,アセトニトリルにサンプルを溶かしてからチャージ・乾燥後に落ち着いてカラムできる状況は本当にありがたい。Sampletの中身が汚れた場合はナ○ライさんのオープン用逆相シリカとセライトを詰め直せば良いんじゃないかなぁとか考えている(Biotageさんも詰め替え用を売っているのかな?)。

*筆者は本当にBiotageさんの回し者ではなく「良いものは良い」をモットーに現場でヒィヒィ言っている方に快適な実験ライフを送っていただくため,自分で経験した中で良さそうなことを共有したいだけである。その中でも断言する。あれは良いものだ

ポンコツアナログ世代,デジタル化に別れを告げられる

Isoleraの有用性を確認できたところで,周りのラボメンにも有用性がバレてしまい,ラボメンのほとんどが利用することになった。利用頻度が上がったので,Isolera用のSfarカラムや空ボトル,ノーパワーな筆者が200g/350gの蓋を開けるための専用レンチ等を購入し,消耗品を充実させた次の週,Isoleraさんは二度と目覚めることなく,突然筆者らの前から消えてしまった(享年約20歳)。筆者との出会いはわずか半年であった。

結局,筆者は研究において実験のデジタル化を目指しても実験の神様に許されず,運命的にアナログな人間として生きていかなければならないことを悟り,今まで通りこれまで培ってきた実験技術を用いて化合物のgスケール合成に挑むのであった…。

続く

関連リンク・余談

いらすとや :アイキャッチ画像の素材引用元。

化学の素材屋さん:化学系のイラスト探していたので大変ありがたかった。最近,記事の遅筆原因が筆者のグラフィック構成の引き出しが尽きてTOCを作るのが面倒になってきたからとか言えない。

Biotageカラムの基本テクニック:Biotageさんからオフィシャルに精製装置をうまく使うための使用法が公開されている。

新型BiotageマシンのHow toシリーズ: ケムステ中リンク(1が最も古い記事)。

ポンコツTwitter:記事の更新が遅れた分,なかなかクレイジーな実験系やヒャッハーな精製方法をアップしてみた。興味があればフォローしてほしい。

関連商品

[amazonjs asin=”B01BD9DDNM” locale=”JP” title=”柴田科学 HARIO(ハリオ) 三角フラスコ500ml SF-500 SCI”] [amazonjs asin=”B0069IES9G” locale=”JP” title=”駒込ピペット 10ml (ゴム帽付き)ガラス製”]

 

 

 

NANA-Mer.

投稿者の記事一覧

たぶん有機化学が専門の博士。飽きっぽい性格で集中力が続かないので,開き直って「器用貧乏を極めた博士」になることが人生目標。いい歳になってきたのに,今だ大人になれないのが最近の悩み。読み方はナナメルorナナメェ…?

関連記事

  1. ミトコンドリア内タンパク質を分解する標的タンパク質分解技術「mi…
  2. 分子構造を 3D で観察しよう (1)
  3. マテリアルズ・インフォマティクスの基本とMI推進
  4. 2007年度ノーベル化学賞を予想!(3)
  5. 経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材…
  6. 【動画】元素のうた―日本語バージョン
  7. 化学者のためのエレクトロニクス講座~半導体の歴史編~
  8. リケジョ注目!ロレアル-ユネスコ女性科学者日本奨励賞-2013

注目情報

ピックアップ記事

  1. 最新有機合成法: 設計と戦略
  2. アメリカ化学留学 ”立志編 ー留学の種類ー”!
  3. 普通じゃ満足できない元素マニアのあなたに:元素手帳2016
  4. タンパク質の定量法―ブラッドフォード法 Protein Quantification – Bradford Protein Assay
  5. 銅触媒による第三級アルキルハロゲン化物の立体特異的アルキニル化反応開発
  6. 持田製薬/エパデールのスイッチOTC承認へ
  7. シモンズ・スミス反応 Simmons-Smith Reaction
  8. ネオジム磁石の調達、製造技術とビジネス戦略【終了】
  9. 有機レドックスフロー電池 (ORFB)の新展開:高分子を活物質に使う
  10. ビールに使われている炭水化物を特定する方法が発見される

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年2月
 12345
6789101112
13141516171819
20212223242526
2728  

注目情報

最新記事

MEDCHEM NEWS 34-1 号「創薬を支える計測・検出技術の最前線」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

医薬品設計における三次元性指標(Fsp³)の再評価

近年、医薬品開発において候補分子の三次元構造が注目されてきました。特に、2009年に発表された論文「…

AI分子生成の導入と基本手法の紹介

本記事では、AIや情報技術を用いた分子生成技術の有機分子設計における有用性や代表的手法について解説し…

第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓く未来-」を開催します!

第53回ケムステVシンポの会告です!今回のVシンポは、若手女性研究者のコミュニティと起業支援…

Nature誌が発表!!2025年注目の7つの技術!!

こんにちは,熊葛です.毎年この時期にはNature誌で,その年注目の7つの技術について取り上げられま…

塩野義製薬:COVID-19治療薬”Ensitrelvir”の超特急製造開発秘話

新型コロナウイルス感染症は2023年5月に5類移行となり、昨年はこれまでの生活が…

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー