[スポンサーリンク]

一般的な話題

始めよう!3Dプリンターを使った実験器具DIY:準備・お手軽プリント編

[スポンサーリンク]

オリジナルの実験器具を3Dプリンターで作る企画を始めました。第一弾として3Dプリンターの導入と試しに印刷してみた結果を紹介します。

企画内容

少し前に大きな話題になった3Dプリンターは、現在では5万円以下の低価格な機種がたくさん発売されており、気軽にチャレンジできるDIYの一つになっています。一方、化学実験(特に有機合成)ではたくさんの種類のガラス器具を使うため、いかにそれらの器具を壊さずかつ効率よく取り扱うかが重要となります。特にナスフラスコをはじめとする容器は、自律して置くことができない不安定なものが多く、支えやホルダーが必要です。

もちろんナスフラスコ向けのホルダーも販売されていますが、容量、形、口の数といった様々な形に対してバリエーションがあり、不意に触っても傾かず内容物がこぼれないものは少ないのが現状です。

市販のフラスコホルダー、一口のフラスコには最適だが、複数口のフラスコに使用するのは難しいかも。(出典:AXEL)

そこで3Dプリンターでフラスコホルダーなどを作ってみることにしました。他の人の研究例を探してみましたが、意外とフラスコホルダーの例は見つからず、また3Dデータの共有サイトでも自分の理想に近いものは見つからなかったので、世界一安定するフラスコホルダーを自作してみようと考えました。

Greg Grievesさんのモデル (出典:Chemistry Roundbottom Flask Stands)

Greg Grievesさんが印刷してフラスコを乗せた様子、大体のフラスコは乗せられるが、横からぶつけた時の内容物の漏出は避けられないよう。 (出典:Chemistry Roundbottom Flask Stands)

3Dプリンターってお高いんでしょ?3Dモデルを作るのには専門知識が必要なのでは?そんな誰もが思う疑問を解決すべく、まず3Dプリンターの準備から、とりあえず他の人が作った3Dデータを印刷してみて、さらには自分でモデルをデザインするところまでを記事にしていきます。今回は、第一弾としてとりあえず印刷するところまでを紹介します。

プリンター購入編

3Dプリンターの選定ですが、個人でも購入できる数万円から工業用の数百万円する機種まで様々ありますが、筆者は下記の機種を購入しました。

[amazonjs asin=”B0BC1NHW6T” locale=”JP” title=”ANYCUBIC 3Dプリンター Anycubic Kobra Neo 自動レベリング 高速印刷 印刷サイズ 220x220x250mm 一体型短距離押出機 停電回復機能 PEIばね鋼磁気プラットフォーム 操作簡易 高精度 TPU/ABS/PLA/PETG対応 日本語マニュアル付き 専門者/初心者/学校等向け”]

まず印刷方式ですが、10万円位までのお手頃価格の3Dプリンターでは、フィラメント樹脂を熱で溶かして造形する熱溶解積層方式液体状の光硬化樹脂に光を照射して造形する光造形方式の2種類がメジャーです。今回は自宅での使用を考えていましたので、大量の液体を使用する光造形方式は扱いづらく熱溶解積層方式を選択しました。液体材料のハンドリングで困らない化学実験室なら光造形の3Dプリンターを選択することも可能かと思います。光造形の方が、きめの細かな造形物が作りやすいこと、造形速度は比較的速い傾向があるそうです。

[amazonjs asin=”B09PHBDCJS” locale=”JP” title=”ANYCUBIC Photon M3 3Dプリンター 光造形 7.6インチ HD Ultra 4K+モノクロLCD レーザー彫刻プラットフォーム 超高印刷精度 印刷サイズ 163*180*102mm”]

次に機種ですが、発売日と印刷可能サイズで決めました。新しい製品の方が高機能・高品質だと思い、とりあえず新しい物を選定しました。印刷可能サイズが大きいほど自由度は高くなりますがその分場所も取るので、縦横20cmくらいの機種にしました。Youtubeなどを見ていると位置校正に手間がかかるようなので、オートレベリング機能が付いた機種にしました。ただし、最近はどの機種にもついているようです。

購入した3Dプリンター、テレビ台に乗せて使用

本体購入により無料で入手したフィラメント、購入時は黒い台座にフルに巻かれていたが、すでにだいぶ使用して少なくなっている。

[amazonjs asin=”B0771LQH8H” locale=”JP” title=”ANYCUBIC フィラメント 3Dプリンター用 造形 pla 高密度 環境保護 純正材料 【1.75mm】【正味1kg】 (レッド, PLA)”]

プリンター組み立て・セットアップ編

プリンターが届いたら組み立てを行いました。基本的には付属の工具でねじを締めるだけでしたが、英語の説明書はなかなか分かりにくく、やや苦労しました。

横の写真、組み立てではこのヘッドと支柱を台座に取り付けた。

ステージ、磁石で貼り付けてあり、印刷を始める前はアルコールで拭いてきれいにしている。

取説、取り付けに手間取った箇所もある。

次に電源を入れてのセットアップですが、高さ方向の位置調整とフィラメントの導入だけでした。コントロールパネルは英語表記ですが、分かりやすいインターフェイスになっていると思います。

高さ方向を測定する部品(おそらくオレンジ色の物)がヘッドに取り付けられていてオートレベリングが可能。

画面においてLevelingを選び、その中のAuto-levelingを選択すると、ステージ上の複数の点を測定して調整してくれる。

filament Loadでフィラメントをヘッドの上部に差し込むと引き込まれてセットされる。

初めてのプリント編

ではいよいよ印刷ですが、流れとしては3DCADソフトで作ったモデルのファイルを用意し、それを3Dプリンター付属のソフトで変換し、マイクロSDに保存し、プリンターに読み込ませて印刷します。もちろん大きな仕事はモデルのファイルを3DCADソフトで作ることですが、ここでは手っ取り早く印刷するためにモデルの投稿サイトからダウンロードして印刷しました。

ソフトのインターフェースと最初に印刷したモデル、印刷速度と充填率などは簡単に変更できる。

次にファイルの変換ですが自分が購入した3DプリンターではUltimaker Curaというソフトが付属しており、こちらで3Dプリンターで読み取ることができるG-codeファイルに変換します。3Dプリンターに読み込ませるG-codeファイルは、造形物の設計図と仕様書のような役割があり、形式の変換だけでなく印刷速度や内部の充填率、プリンターの設定温度を決めたり、ステージから浮いた構造の場合にはサポート材の付加を行うことができます。ただ最初なのでよくわからずデフォルトのままにしました。

詳細設定を開くと細かく設定を変更できる。

 

ファイル変換後の様子、右下に印刷時間とフィラメントの使用量が表示されるので、印刷速度を上げたり、充填率を下げるなどの調整の参考になる。

どのように積層されるかもソフト上で確認できる。

ファイルを付属のマイクロSDに保存したら、いよいよ印刷に入ります。ステージの温度と印刷ヘッドの温度が上がって印刷始まりました!?!?印刷物がステージに張り付かず、焼きそばが出来上がりました。

失敗時の再現、円形のプリントを行っているが形にならない。

この最初の層がステージに張り付かない問題はよくある失敗の様で、ネットに対策がいくつか掲載されていたのでそれを行うことにしました。実際、ステージの温度の変更、スティックのりの塗布、フィラメントの引き込み強度の変更を行いましたが全く変わらず。。。もう自分は3Dプリンターでの造形に向いていないのかと2日ほど悩みました。

しかし、これは合成実験における条件検討と同じだと思い、印刷条件の再検討を行いました。すると、ノズルとステージの距離がだいぶ遠く、樹脂がステージに塗られているというよりかむしろ垂れていることに気が付きました。そこで印刷中にZ軸のオフセットを変え、ノズルとステージの距離を短くすることにしました。すると樹脂がステージに張り付くようになり、モデル通りに作ることはできました。

成功時の再現、ムラはあるものの、円形に印刷されている。

一層目だけ印刷した様子、ムラがあるところもあるが概ね均一に樹脂が塗布されている。

完成第一号の小物入れ

プチカスタム編

Ultimaker Curaでモデルを一から作ることはできませんが、XYZ方向にサイズを変更することは可能です。そこで、モデルの投稿サイトからダウンロードしたデータの大きさを変えて印刷を行いました。

第一号を1.5倍大きくした第二号、大きくなっても品質は同じ

100mlの三ツ口フラスコを入れた様子、サイドの口が入れ物のふちに引っ掛けて転がらない。

こちらは、オリジナルよりもXYZ等倍率で150%ほど大きくしたものですが、3つ口のフラスコにちょうど良い大きさです。

隙間の大きさに合わせて大きくしたツールボックス、外側は問題ない。

Y軸とZ軸で拡大率が異なるため、真円とならずうまく回らなくなってしまった。そして印刷速度も速くしたので段差や、ムラが目立つ

オリジナルのサイズで印刷したツールボックスは、蓋が動く。

こちらは、空きスペースに合わせて大きさを変えた小物入れですが、XとZ方向の大きさをそろえなかったので、回転する部分が真円にならず動きが悪い蓋になってしまいました。

今回は3Dプリンターを購入し、3DCADなしで何が印刷できるのかまでを紹介しました。フラスコ受けといったニッチな物はなかなか投稿例が少ないですが、フラスコ受けに代用できるものはたくさん投稿されており、100均で使えそうなものを探す時と同様に面白かったです。大きさを変えるだけで用途が広がることが分かりました。

次回は、よりフィットする物を作るために3DCADを使ってオリジナルのデザインに挑戦します。

関連書籍

[amazonjs asin=”4526078956″ locale=”JP” title=”わかる! 使える! 3Dプリンター入門〈基礎知識〉〈段取り〉〈業務活用〉”] [amazonjs asin=”4895907287″ locale=”JP” title=”無料データをそのまま3Dプリント 作業に出会える道具カタログ/事例集”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. “匂いのゴジラ”の無効化
  2. PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法
  3. 【4月開催】第七回 マツモトファインケミカル技術セミナー
  4. 史上最も不運な化学者?
  5. その置換基、パラジウムと交換しませんか?
  6. 炭素をつなげる王道反応:アルドール反応 (3)
  7. 化学者のためのエレクトロニクス入門③ ~半導体業界で活躍する化学…
  8. 金属錯体化学を使って神経伝達物質受容体を選択的に活性化する

注目情報

ピックアップ記事

  1. 美しい化学構造式を書きたい方に
  2. 鈴木・宮浦クロスカップリング Suzuki-Miyaura Cross Coupling
  3. 酒石酸にまつわるエトセトラ
  4. モウンジ・バウェンディ Moungi G Bawendi
  5. オカモトが過去最高益を記録
  6. 2009年10大分子発表!
  7. 【速報】2015年ノーベル化学賞は「DNA修復機構の解明」に!
  8. 口頭発表での緊張しない6つのヒント
  9. 簡単に扱えるボロン酸誘導体の開発 ~小さな構造変化が大きな違いを生んだ~
  10. 化学のためのPythonによるデータ解析・機械学習入門

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー