[スポンサーリンク]

化学者のつぶやき

ルイス酸/塩基でケイ素を操る!シリレンの原子価互変異性化

[スポンサーリンク]

ケイ素錯体がルイス酸/塩基に応答して原子価互変異性を示す例が初めて報告された。遷移金属触媒の代替や配位子への応用が期待される。

ケイ素の原子価互変異性

原子価互変異性とは、外部刺激に応答する中心元素/配位子間での分子内電子移動により、中心元素の価数が変化する現象である(図1A)[1]。この現象は、電子デバイスなどの機能性材料への応用が期待されている。遷移金属元素でよく知られている一方で、典型元素における原子価互変異性は報告例が少ない[1]。中でも低原子価のケイ素における原子価互変異性は、最近2例報告されたのみである。最初の報告は2020年Driessらの報告であり、ビス(シリレニル)-ortho-カルボラン配位子を有する単原子0価ケイ素錯体が還元により原子価互変異性を示した(図1B)[2]。2例目は、2021年に岩本らによって報告された環状(アルキル)(アミノ)シリレンを配位子として用いた単原子0価ケイ素錯体である(図1C)[3]。この錯体は固相と液相によって2つの電子状態が可逆的に切り替わる。このように、原子価互変異性を示すケイ素の化学は未だ開拓されたばかりである。

今回カールスルーエ工科大学のRoeskyらは、2012年にSoらにより報告されたI価およびIII価の異なる価数をもつ2つのケイ素が結合したモノシリレン1に着目した(図1D)[4]。著者らは、モノシリレン1がルイス酸/塩基に応答して原子価互変異性を示すことを見いだした。

図1. (A) 原子価互変異性 (B) 原子価互変異性を示した最初のケイ素錯体 (C) 固相-液相間で可逆的な原子価互変異性を示すケイ素錯体 (D) ルイス酸/塩基による可逆的な原子価互変異性を示すケイ素錯体 (Dipp = 2, 6-diisopropylphenyl)

 

“Stimuli Responsive Silylene: Electromerism Induced Reversible Switching between Mono- and Bis-silylene”
Yadav, R.; Sun, X.; Köppe, R.; Gamer, M. T.; Weigend, F.; Roesky, P. W. Angew. Chem., Int. Ed. 2022, e202211115. DOI: 10.1002/anie.202211115

論文著者の紹介

研究者: Peter W. Roesky

研究者の経歴:

1992–1994 Ph.D., Technical University of Munich, Germany (Prof. W. A. Herrmann)
1995–1996 Postdoc, Northwestern University, USA (Prof. T. J. Marks)
1996–1999 Habilitation, University of Karlsruhe, Germany (Prof. Dr. D. Fenske)
1999–2001 Privatdozent, University of Karlsruhe, Germany
2001–2008 Professor of Inorganic Chemistry, Free University of Berlin, Germany
2008–      Professor of Inorganic Chemistry, University of Karlsruhe (currently Karlsruhe Institute for Technology), Germany

研究内容: ランタノイド、金、亜鉛、アルカリ土類金属などの錯体の性質解明と触媒への応用

論文の概要

Soらの報告において副生成物として確認された1を、著者らは{[PhC(NtBu)2]SiCl} (3)と[DippN(H)Li] (4)の反応から収率90%で得た(図2A左)。合成したモノシリレン1にルイス酸であるCuMesを添加すると、ビスシリレン-銅錯体2が生成した。一方、ビスシリレン2はルイス塩基としてカルベン5を反応させるとモノシリレン1に戻った。1および2におけるケイ素の原子価はそれぞれI価とIII価およびII価であるため、これらはルイス酸/塩基に応答して原子価互変異性を示すことが示唆された。

実際に原子価互変異性化しているか確認するために、それぞれの化学種におけるケイ素の価数を調査した(図2A右)。29Si{1H} NMRスペクトルでは、1は2本のピークが31.8, –61.7 ppmに観測された。このピークは、理論計算からそれぞれI価およびIII価と帰属された。一方で、2は–9.7 ppmに単一のピークが現れ、1種類のケイ素原子のみ存在していた。また、X線結晶構造解析でビスシリレン2のSi–Cu結合長が既存のシリレン(II)–Cu(I)錯体のSi–Cu結合長とよい一致を示したことからも、2のケイ素はII価であると確かめられた [5]。以上の解析結果から、12の間でケイ素の価数はI価とIII価からII価へと変化しており、ルイス酸/塩基の添加により原子価互変異性が起こっていると結論づけられた。

本研究の進行中に、Driessらによりアミン上にフェニル基をもつ類縁体ビスシリレン6’が報告された[6]。そこでDFT計算により、原子価互変異性体間のギブスエネルギーに対するアミン上の置換基の影響が調べられた(図2B左)。かさ高いDipp基をもつ場合、ビスシリレン6がモノシリレン1よりも9 kJ/mol不安定であるのに対し、フェニル基の場合、6’1’よりも53 kJ/mol安定である。61よりも不安定なのは、Dipp基とアミジナート配位子上のtBu基との立体障害によると考えられる(図2B右)。つまり、12(6)が可逆的な原子価互変異性を示すには、アミン上の置換基のかさ高さが重要である。

図2. (A) モノシリレン1とビスシリレン2の合成と物理的性質 (B) モノシリレンとビスシリレンのギブスエネルギーと6および6’の最適化構造 (図2は一部論文より転載)

 

以上、ルイス酸/塩基による低原子価ケイ素の可逆的原子価互変異性が初めて報告された。金属を使わない刺激応答性デバイスや、系中で自在に活性を調節できるシリレン配位子などへの応用が有望視される。

参考文献

  1. Greb, L. Valence Tautomerism of p-Block Element Compounds – An Eligible Phenomenon for Main Group Catalysis? Eur. J. Inorg. Chem. 2022, e202100871. DOI: 10.1002/ejic.202100871
  2. Yao, S.; Kostenko, A.; Xiong, Y.; Ruzicka, A.; Driess, M. Redox Noninnocent Monoatomic Silicon(0) Complex (“Silylone”): Its One-Electron-Reduction Induces an Intramolecular One-Electron-Oxidation of Silicon(0) to Silicon(I). J. Am. Chem. Soc. 2020, 142, 12608–12612. DOI: 10.1021/jacs.0c06238
  3. Koike, T.; Nukazawa, T.; Iwamoto, T. Conformationally Switchable Silylone: Electron Redistribution Accompanied by Ligand Reorientation around a Monatomic Silicon. J. Am. Chem. Soc. 2021, 143, 14332–14341. DOI: 10.1021/jacs.1c06654
  4. Zhang, S.-H.; Xi, H.-W.; Lim, K. H.; Meng, Q.; Huang, M.-B.; So, C.-W. Synthesis and Characterization of a Singlet Delocalized 2,4-Diimino-1,3-disilacyclobutanediyl and a Silylenylsilaimine. Chem. Eur. J. 2012, 18, 4258–4263. DOI: 10.1002/chem.201103351
  5. Paesch, A. N.; Kreyenschmidt, A.-K.; Herbst-Irmer, R.; Stalke, D. Side-Arm Functionalized Silylene Copper(I) Complexes in Catalysis. Inorg. Chem. 2019, 58, 7000–7009. DOI: 10.1021/acs.inorgchem.9b00629
  6. Xiong, Y.; Dong, S.; Yao, S.; Dai, C.; Zhu, J.; Kemper, S. Driess, M. An Isolable 2,5-Disila-3,4-diphosphapyrrole and a Conjugated Si=P−Si=P−Si=N Chain through Degradation of White Phosphorus with a N,N-Bis(silylenyl)aniline. Angew. Chem., Int. Ed. 2022, e202209250. DOI: 10.1002/anie.202209250
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. スローン賞って知っていますか?
  2. オートファジーの化学的誘起で有害物質除去を行う新戦略「AUTAC…
  3. 日本化学会 第103春季年会 付設展示会ケムステキャンペーン P…
  4. センチメートルサイズで均一の有機分子薄膜をつくる!”…
  5. π-アリルイリジウムに新たな光を
  6. iPhone/iPodTouchで使える化学アプリケーション
  7. マイクロ波プロセスの工業化 〜環境/化学・ヘルスケア・電材領域で…
  8. 経験と資格を生かしたいが実務経験なし。 そんな30代女性の再就職…

注目情報

ピックアップ記事

  1. ミツバチの活動を抑えるスプレー 高知大発の企業が開発
  2. 近況報告PartI
  3. PACIFICHEM2010に参加してきました!②
  4. 【書籍】10分間ミステリー
  5. ハッピー・ハロウィーン・リアクション
  6. ヤクルト、大腸の抗がん剤「エルブラット」発売
  7. 平井健二 HIRAI Kenji
  8. シス型 ゲラニルゲラニル二リン酸?
  9. えっ!そうなの?! 私たちを包み込む化学物質
  10. ウーロン茶の中でも医薬品の化学合成が可能に

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

有機合成化学協会誌2024年12月号:パラジウム-ヒドロキシ基含有ホスフィン触媒・元素多様化・縮環型天然物・求電子的シアノ化・オリゴペプチド合成

有機合成化学協会が発行する有機合成化学協会誌、2024年12月号がオンライン公開されています。…

「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~

 開講期間 2025年1月8日(水)、9日(木)、15日(水)、16日(木) 計4日間申込みはこ…

余裕でドラフトに収まるビュッヒ史上最小 ロータリーエバポレーターR-80シリーズ

高性能のロータリーエバポレーターで、効率良く研究を進めたい。けれど設置スペースに限りがあり購入を諦め…

有機ホウ素化合物の「安定性」と「反応性」を両立した新しい鈴木–宮浦クロスカップリング反応の開発

第 635 回のスポットライトリサーチは、広島大学大学院・先進理工系科学研究科 博士…

植物繊維を叩いてアンモニアをつくろう ~メカノケミカル窒素固定新合成法~

Tshozoです。今回また興味深い、農業や資源問題の解決の突破口になり得る窒素固定方法がNatu…

自己実現を模索した50代のキャリア選択。「やりたいこと」が年収を上回った瞬間

50歳前後は、会社員にとってキャリアの大きな節目となります。定年までの道筋を見据えて、現職に留まるべ…

イグノーベル賞2024振り返り

ノーベル賞も発表されており、イグノーベル賞の紹介は今更かもしれませんが紹介記事を作成しました。 …

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP