マトリン型ルピンアルカロイドの網羅的な新奇合成法が開発された。生合成仮説を模倣したピリジンの脱芳香環化反応により、四環式骨格の効率的な構築に成功した。
ピリジンの脱芳香族化によるマトリン型ルピンアルカロイドの骨格構築
ルピンアルカロイド(1–5)はLupinus属植物から単離されたキノリジジン環を基礎骨格とする化合物群である(図1A)。ルピンアルカロイドの一種である(+)-マトリン(2)は転移性ガン細胞の増殖阻害や抗炎症作用、(–)-ソホリジン(4)は抗炎症活性や抗菌作用を示すことが知られている[1]。このようにマトリン型のルピンアルカロイドは有用な薬理作用をもつ一方で、天然からは微量しか得られない[2]。有機合成によってこれらの効率的な量的供給が実現できれば、マトリン型ルピンアルカロイドの生物学的研究の加速につながる。これまでにマトリン(2)の全合成が5例、アロマトリン(3)の全合成が3例、イソマトリン(1)の全合成が1例あるが、類縁体を網羅的に合成する手法はいまだ知られていない[3]。
そこで今回、カリフォルニア工科大学のReismanらは種々のマトリン型ルピンアルカロイドにアクセスできる網羅的合成法の開発に挑戦した。まず、著者らは(+)-マトリン(2)の生合成仮説に着目し、これらの四環式骨格の構築を計画した(図1B)[4]。生合成仮説において、2は3分子の(–)-リジン(6)が酵素によって7と8に変換され、続いて7と8のマンニッヒ反応からはじまる環化反応、最後に還元と酸化によって得られると提唱されている。この生合成仮説に基づいた、著者らの1の逆合成解析を示す(図1C)。まず、1は10の還元および位置選択的酸化により誘導できるとした。続いてピリジン(11)が7のシントンになりうると考え、10は11と塩化グルタリル(12)より生成した中間体の、脱芳香族的環化反応で得られると考えた。さらに、熱力学的に最も不安定なイソマトリン(1)が合成できれば、1の異性化によって他のマトリン型ルピンアルカロイドに変換できると期待した。すなわち、この合成計画が実現すれば、網羅的なマトリン型ルピンアルカロイドの合成が可能になると考えた。
“A Pyridine Dearomatization Approach to the Matrine-Type Lupin Alkaloids”
Kerkovius, J. K.; Stegner, A.; Turlik, A.; Lam, P. H.; Houk, K. N.; Reisman, S. E. J. Am. Chem. Soc. 2022, 144, 15938–15943.
DOI: 10.1021/jacs.2c06584
論文著者の紹介
研究者:Sarah E. Reisman
研究者の経歴:
1997–2001 B.A., Connecticut College, USA (Prof. Timo V. Ovaska)
2001–2006 Ph.D., Yale University, USA (Prof. John L. Wood)
2006–2008 Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)
2008–2014 Assistant Professor, California Institute of Technology, USA
2014– Professor, California Institute of Technology, USA
研究内容:天然物合成、Ni触媒を用いたクロスカップリング反応の開発
論文の概要
著者らはまず、生合成仮説を模倣した四環式骨格の構築に着手した(図2)。–50 °Cで塩化グルタリル(12)にピリジン(11)を添加した後、室温で攪拌するだけで四環式骨格をもつ10が良好な収率で得られた(1モルスケール)。この機構は協奏的な[4+2]環化付加反応ではなく、ピリジンの脱芳香族化を伴いながら逐次的に反応が進行していることがDFT計算により明らかとなった。さらに1H NMR追跡実験の結果から、11の添加時に反応温度を–50 °Cに保持することで12から中間体13への反応を円滑に進めていることがわかった。続いて構築した四環式骨格の還元によって9を得たのち、9のC15位の選択的酸化を試みた。まず、(+)-マトリン(2)の生合成を参考に酵素(180種)を用いた酸化を試みたが、目的の化合物1は合成できなかった。そこで著者らはKessarらの報告に注目した[5]。この反応では、3級アミンの窒素原子のa位をルイス酸および塩基で選択的に脱プロトン化し、続いて求電子剤を作用させることで置換基を導入できる。MeOBzを求電子剤として、この反応を9に適用したところ、C15位で位置選択的にベンゾイル化することに成功した。続いて、ワンポットで酸化したところ低収率であるものの1を与えた。最後に、1を種々の金属触媒で脱水素化-水素化(異性化)し、マトリン型ルピンアルカロイド2–5を合成した。特に、Pt触媒による異性化では4が生成し、4の初の全合成を達成した。
以上、わずか4、5工程でのマトリン型アルカロイドの網羅的合成法が開発された。そのあまりにも速すぎる合成にピリジンも脱帽(脱芳)してしまいそうであるっ!!
参考文献
- (a) Zhang, H.; Chen, L.; Sun, X.; Yang, Q.; Wan, L.; Guo, C. Matrine: A Promising Natural Product with Various Pharmacological Activities. Front. Pharmacol. 2020, 11, 588. DOI: 10.3389/fphar.2020.00588 (b) You, L.; Yang, C.; Du, Y.; Wang, W.; Sun, M.; Liu, J.; Ma, B.; Pang, L.; Zeng, Y.; Zhang, Z.; Dong, X.; Yin, X.; Ni, J. A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front. Pharmacol. 2020, 11, 01067. DOI: 10.3389/fphar.2020.01067
- Zhang, H.; Chen, L.; Sun, X.; Yang, Q.; Wan, L.; Guo, C. Matrine: A Promising Natural Product with Various Pharmacological Activities. Front. Pharmacol. 2020, 11, 588. DOI: 10.3389/fphar.2020.00588
- (a) Mandell, L.; Singh, K. P.; Gresham, J. T.; Freeman, W. Total Synthesis of d,l-Matrine. J. Am. Chem. Soc. 1963, 85, 2682−2683. DOI: 10.1021/ja00900a048 (b) Okuda, S.; Yoshimoto, M.; Tsuda, K. Studies on Lupin Alkaloids. IV. Total Syntheses of Optically Active Matrine and Allomatrine. Chem. Pharm. Bull. 1966, 14, 275−279. DOI: 10.1248/cpb.14.275 (c) Chen, J.; Browne, L. J.; Gonnela, N. C. Total Synthesis of (±)-Matrine. J. Chem. Soc., Chem. Commun. 1986, 905−907. DOI: 10.1039/C39860000905 (d) Boiteau, L.; Boivin, J.; Liard, A.; Quiclet-Sire, B.; Zard, S. Z. A Short Synthesis of (±)-Matrine. Angew. Chem., Int. Ed. 1998, 37, 1128− 1131. DOI: 10.1002/(SICI)1521-3773(19980504)37:8<1128::AID-ANIE1128>3.0.CO;2-P (e) Magann, N.; Westley, E.; Sowden, M.; Gardiner, M.; Sherburn, M. Total Synthesis of Matrine Alkaloids; preprint; Chemistry, 2022. DOI: 10.26434/chemrxiv-2022-j87g9(f) Watkin, S. V.; Camp, N. P.; Brown, R. C. D. Total Synthesis of the Tetracyclic Lupin Alkaloid (+)-Allomatrine. Org. Lett. 2013, 15, 4596− 4599. DOI: 10.1021/ol402198n
- Bunsupa, S.; Katayama, K.; Ikeura, E.; Oikawa, A.; Toyooka, T.; Saito, K.; Yamazaki, M. Lysine Decarboxylase Catalyzes the First Step of Quinolizidine Alkaloid Biosynthesis and Coevolved with Alkaloid Production in Leguminosae. Plant Cell 2012, 24, 1202−1216. DOI: 1105/tpc.112.095885
- Kessar, S. V.; Singh, P.; Singh, P. K. N.; Singh, S. K. Facile a-Deprotonation-Electrophilic Substitution of Quinuclidine and DABCO. Chem. Commun. 1999, 1927−1928. DOI: 10.1039/A905359J