[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~電解パラジウムめっき編~

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。今回は、電子部品の省金化などに欠かせない電解パラジウムめっきを取り上げます。

パラジウムの結晶(画像:Wikipedia

有機化学ではクロスカップリングをはじめ触媒金属として名高く、近年では水素吸蔵合金の主成分としても嘱望されているパラジウムですが、工業的には自動車の排気ガス中の窒素酸化物NOxなどを除去する三元触媒としての需要が目立ちます。

パラジウムは有機金属化学の花形です(画像:Wikipedia

自動車の三元触媒にもパラジウムが使われています(画像:Wikipedia

エレクトロニクス分野においては比較的加工が容易でありながら高い耐食性を誇り、金や銅のように原子レベルの熱拡散を起こしにくいことから、配線層の金めっきの下地として内部金属を保護しつつ金の使用量を低減(省金化)するために用いられます。

とはいえパラジウムも貴金属であり、主に周期表の上下に位置するニッケルや白金の副産物として精錬されています。その鉱床はロシアや南アフリカに偏在していることから価格が不安定で、政治的要因によって供給難に陥りやすい欠点もあります。近年ではロシアによるウクライナ侵攻の影響のほか南アフリカでの産出量も減少しており、価格も高止まりを見せています。

パラジウム価格の急騰(画像:Wikipedia

パラジウムめっきにおける最大の難点は、先に述べた水素吸蔵合金の原理と関連しています。カソード上で競合するHERによって生じた水素ガスがパラジウム金属によって吸蔵されることによる脆化(水素脆化)によって引き起こされる不良が問題となります。類似の現象は様々な金属で起こりますが、パラジウムでは常温・常圧下で自身の体積の935倍もの水素ガスを急増し、それに伴って大きな体積変化を起こすために卓越しており、応力の増加、ひいては破断の原因となります。この現象はめっき皮膜が厚くなると顕在化するため、純パラジウムの厚付けめっきは長らく技術的に困難でした。

水素吸蔵合金として注目されるパラジウムは水素脆化の問題を抱えます(画像:Wikipedia

このため、産業的には純パラジウムの出番はさほど多くなく、ニッケルなどとの合金として特性を改善したうえでめっきされることも多々あります。

パラジウムめっき浴

さて、代表的な純パラジウムめっき浴にはアンモニア/塩化アンモニウム緩衝液を用いてアンミン錯体とした塩化アンミン浴と、塩化パラジウムを主成分とする古典的な塩化パラジウム浴が挙げられます。塩化アンミン浴は最も広く用いられていますが、金属表面が曇りやすく、またアンモニア蒸気を絶えず発生するため作業者の安全や環境上の問題に配慮する必要があります。一方、塩化パラジウム浴は残留応力が小さく、緻密なめっき皮膜が得られやすいという長所があります。このほかにも、安定性が劣るもののジニトロジアンミンパラジウム錯体を用いる手法や、硫酸パラジウムを利用し共析した硫黄によって皮膜の物理的特性を改善しようとする試みもありました。

一方、パラジウムはニッケルとよく固溶することから、ニッケルを20 %程度添加した合金とすることによって硬度を増大させ、展延性を向上させるとともに、ピンホールが少なく耐食性に優れためっき皮膜を得ることが可能となります。このパラジウムニッケル合金めっきは配線層の銅を保護する上で優れた性質を示すことから、近年では純パラジウムに代わってエレクトロニクス業界では重要なめっき手法となりつつあります。添加剤の進歩により、貴なパラジウムを卑なニッケルと一定の割合で析出させる技術が確立されており、極めて薄い被膜でも緻密に銅表面を保護することが可能となっています。

このパラジウム-ニッケルめっき浴は塩化アンミン浴スルファミン酸浴が代表的であり、用途に応じて使い分けられています。

最近の動向

パラジウム価格の高騰が続く中、さらに薄くても緻密な皮膜を安定して得ることのできるめっき浴の研究が進められつつあります。また、他の金属の時と同様に、パラジウムめっきもまた無電解めっきへとシフトしつつあります。値上がりの規模や期間によってはパラジウムにとってかわる材料の開発につながる可能性も否定できず、今後の先行きは不透明といえます。

・・・

長くなりましたので今回はこのあたりで区切ります。次回は電解パラジウムめっきを特集しますのでお楽しみに!

関連書籍

[amazonjs asin=”4526053732″ locale=”JP” title=”次世代めっき技術―表面技術におけるプロセス・イノベーション”] [amazonjs asin=”4526045225″ locale=”JP” title=”表面処理工学―基礎と応用”] [amazonjs asin=”B000J740MS” locale=”JP” title=”めっき技術ガイドブック (1983年)”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  2. 試薬の構造式検索 ~便利な機能と使い方~
  3. たったひとつのたんぱく質分子のリン酸化を検出する新手法を開発
  4. gem-ジフルオロアルケンの新奇合成法
  5. 光エネルギーによって二酸化炭素を変換する光触媒の開発
  6. ウレエートを強塩基性官能基として利用したキラルブレンステッド塩基…
  7. 構造式の効果
  8. アロタケタールの全合成

注目情報

ピックアップ記事

  1. ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド:Bis(triphenylphosphine)palladium(II) Dichloride
  2. 南ア企業がヘリウム生産に挑む
  3. 日化年会に参加しました:たまたま聞いたA講演より
  4. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ④
  5. タンパク質の構造と機能―ゲノム時代のアプローチ
  6. 消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立
  7. カチオンキャッピングにより平面π系オリゴマーの電子物性調査を実現!
  8. 集光型太陽光発電システムの市場動向・技術動向【終了】
  9. パーキンソン病治療の薬によりギャンブル依存に
  10. 旭化成、5年で戦略投資4千億

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年12月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

野々山 貴行 Takayuki NONOYAMA

野々山 貴行 (NONOYAMA Takayuki)は、高分子材料科学、ゲル、ソフトマテリアル、ソフ…

城﨑 由紀 Yuki SHIROSAKI

城﨑 由紀(Yuki SHIROSAKI)は、生体無機材料を専門とする日本の化学者である。2025年…

中村 真紀 Maki NAKAMURA

中村真紀(Maki NAKAMURA 産業技術総合研究所)は、日本の化学者である。産業技術総合研究所…

フッ素が実現する高効率なレアメタルフリー水電解酸素生成触媒

第638回のスポットライトリサーチは、東京工業大学(現 東京科学大学) 理学院化学系 (前田研究室)…

【四国化成ホールディングス】新卒採用情報(2026卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

マイクロ波に少しでもご興味のある方へ まるっとマイクロ波セミナー 〜マイクロ波技術の基本からできることまで〜

プロセスの脱炭素化及び効率化のキーテクノロジーとして注目されている、電子レンジでおなじみの”マイクロ…

世界の技術進歩を支える四国化成の「独創力」

「独創力」を体現する四国化成の研究開発四国化成の開発部隊は、長年蓄積してきた有機…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー